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ABSTRACT

Theoretical. and experimental structural response investigations

of space-vehicle-type structures under suddenly applied external sur-

face loads are described. The simulation of a simultaneous impulsive

load by a traveling load such as produced by an explosive is analyzed

for the string and membrane. Three dynamic buckling problems are

investigated: (1) dynamic plastic-flow buckling of flat plates due to

in-plane flow, (2) dynamic elastic buckling of a thin cylindrical shell

under axial impact, and (3) dynamic buckling of cylindrical shells of

a strain-rate sensitive material. A scheme for correlating the results

of structural response investigations concerned with dynamic failure

loads of structure-s is presented and a brief review of available results

is given.
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1. INTRODUCTION

The work covered in this report is an extension of that described

in [1. 1] and [ 1. ?]. The specific motivation for the investigations is

discussed in Volume I of [1. 1].

The work reported here falls in three major parts: simulation

of simultaneous loads by traveling loads, investigations of dynamic

buckling of structures, and correlation of structural response infor-

mation.

Simulation of simultaneous loads by traveling loads is of

considerable interest because of the relative ease of using explosives

to obtain impulsive loads. In Section 2, the response of the string

and the membrane to traveling loads, as a function of load velocity,

is investigated. It is found that detonation velocities are sufficiently

high to give a good approximation to a simultaneous load.

Buckling has been found to be a significant response mode for

space vehicles under suddenly applied external surface loads. In

the past year three dynamic buckling problems have been investigated.

These are reported in Sections 3, 4, and 5. Section 3 describes

dynamic plastic -flow buckling of a plate due to in-plane flow. Section 4

describes dynamic elastic buckling of a thin cylindrical shell under

axial impact. Section 5 describes dynamic buckling of a cylindrical

shell of a strain-rate sensitive material.

Correlation of structural response information related to

failure loads of space -vehicle-type structures is desirable to make

Numbers in brackets indicate the references listed at the end of
each section.



the results more accessible and to indicate areas where additional

work is required. In Section 6 it is shown that for dynamic loads,

the amplitude -impulse plane is a convenient and meaningful way to

present failure loads. Using this format, a brief summary of

available results is given.

In Section 7 some comments are made on the separation of

the response of space vehicles to suddenly applied surface loads

I into shock response and structural response, and on prediction of

accelerations transmitted to internal components.

II
)a
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2. SIMULATION OF SIMULTANEOUS IMPULSIVE LOADS
ON STRINGS AND MEMBRANES WITH EXPLOSIVES

2. 1 INTRODUCTION

Explosives are a convenient means of simulating simultaneous

impulsive loads on structures. The explosive imparts an impulse by

means of a high-pressure pulse icting within a narrow reaction zone

at the detonation front which travels over the surface away from the

initiation point at the detonation velocity. Consequently, elements

of the structure receive impulsive velocities successively and not

simultaneously as desired. Good simulation of a simultaneously

applied impulse over an area can be expected if the detonation velocity

is sufficiently large, but some criterion is required to decide when

this velocity is large enough.

In this section the responses of a stretched infinite string and

a stretched infinite membrane to traveling concentrated forces repre-

senting a detonation front are investigated. The string has a concen-

trated force of magnitude ZP suddenly applied to it which is supposed

to separate immediately into two equal forces of magnitude P and

travel in opposite directions each at velocity V (Fig. 2. 1). The

membrane has applied to it a

p circular ring load of magnitude

_P per unit length the radius of
0 -.4s which increases at a constant

1$ *... velocity V (Fig. 2.2). Of

particular interest are the dis-
FIG. 2.1 STRING PROBLEM placement and velocity distri-

butions imparted to the string and

membrane when the loads are moving supersonically relative to the

wave velocities. The velocity distributions are compared with the

I



J
constant velocity distribution

resulting from the whole impulse

being applied uniformly over the

length or area traversed by the

load.

Past studies originated with

a treatment by Goodier [ 2. 1] of

•.~. a stretched semi-infinite string

subjected to a concentrated force
FIG. 2.2 MEMBRANE PROBLEM which runs on to it at the support

and travels at a constant velocity.

It was shown that the velocity distribution approaches that rdue to an

ideal impulse covering the portion of the string traversed by the load

as the velocity of the force becomes large. Florence [2.2] treated

the corresponding problem for the beam and included the problem

corresponding to the string problem studied here. A similar con-

clusion was drawn but additionally the velocity distribution was found

much more uniform when initiation was away from a fixed support.

This permitted very uniform distributions of velocity with practical

values of beam wave velocities and detonation velocities. Also, it

was found desirable to have a detonation velocity supersonic relative

to the beam wave velocities.

It is shown here that with central initiation and with practical

values of wave and detonation velocities, a uniform velocity distri-

bution on the string and membrane is achieved. Also, results are

presented to describe the distributions.

2.2 STRING THEORY

Let the two constant loads P originate at time t = 0 at the

origin 0(x,y) (Fig. 2. 1) and separate, each with a constant velocity

V . Let the string have mass m per unit length, be stretched by a

force s and be at rest at time t = 0 . Then the differential equation

i6



of motion, the initial conditions, and boundary conditions are

:x - -4 6(x -Vt) x > 021

c at mc

y(x, 0) (x, 0) = 0 (2.2)

and

x (0, t) =0 Lir y(x, t) 0 (2.3)
X.o

where c = (s/m)1/ 2 is the string wave velocity, and 6 is the Dirac

delta function.

Applying the Laplace transformation to (2. 1) and (2. 3), and

making use of (2.2) gives

d" P e•"p x / V (.4
-(p/c)

2 y p/ (2.4)
dx mc V

(0. p) -0 Lir (x, p) -0 (2.5)
X-p

The solution of (2. 4) satisfying (2. 5) is

P 1 -ps/c IVpx/vj(xp) = 1 (ce --- e - Ve ) (2.6)
V-c p

S7

f a i



Inverting the transform (2. 6), noting that the only singularity

is a simple pole at the origin of the p plane, yields

P .(V- C~t0 < x < t

y~xt)m Vt xzt 0 V~ 28

p. .<x

V c

0 Vt<

P c- 2 0 t< x< Vt 0< V (.

0 ct' J
From(Z.7) ad (. 8 thevelcites ae radiy fond o b

(V 0 < a

m V S



P (c-V) 0 < x < Vt

C *V

• c Vt < x < ct 0 < V < c (2.10)

0 ct< x

An isolated string element of length Ax with a force P

traveling, over it in a time pt receives an impulse Pt . Let the

velocity acquired be v . Then the momentum acquired ii mAxv

PLt. Since At = Ax/V , the velocity of the isolated element is

v = P/mV. Hence the impulse delivered is P/V . If P increases

proportionately with V , i.e., P/V = f where I is a constant, a

series of these elements will approximate a finite length of string

subjected to an impulse I per unit length which imparts a velocity

v . One require-ment for good simulation is therefore that yt/V

should be approximately unit (yt . ay/at).

Figares Z. 3(a) and 2. 3(b) show the velocity and displacement

distributions along the string according to (2. 9) and (Z. 7) with

V = nc (n > 1). The force is moving supersonically relative to the

string wave velocity. To illustrate the degree of simulation consider

the value n 19. From Fig. Z. 3(a) it is seen that the normal

velocity of the string over one-nineteenth of the distance Aversed

by the load is 5 percent less than that due to the same irnpu1ae uni-

formly distributed. Over the remaining distance it is about 0. 3

percent greater.

Good simulation also requires small displacements. Figure

2.3(b) shows the displacements with a maximumof y = vtn/(n+l) or

y/x (v/V)n/(n+l) =v /V where x is the load position. Hence the

9



ratio y t/V or v/V should be

small. In order to estimate

I, reasonable values of the ratio

I----------------------------v/V one can equate the kinetic

A-,e energy imparted to the plastic
n~IP work done, assuming this to be

0 I t much larger ithan the elastic
to) VELOCITY DISTRIBUTION -SUPERSONIC strain-energy capacity. If the

final 2itrain is c , the yield stress

is a0 and the cross-sectional

Vne are-a is A , the energy equation

is mv4/2= e A . Now m pA,

0 y

mum wave velocity of the string,

-~ c'AVp being the mass density. Thus

n~ V = C Vz2T and v /V = /2e/ 0 whe re

U V/c .As a practical example
0 1/n y ft Y

(c) VELOCITY DISTRISUTION- SUUSONIC consider an aluminum string
stretched almcst to yielding at

1/vt 2
a 50, 000 lb /in . With a mass

y 2.4
C IRV density p = 0. 00025 lb-sec /in

the wave velocity is about c

0 tIn t 0. 355 mm/4sec. As an example
(d) DISPLACEMENT DISTRIBUTION -SUBSONIC of an explosive with one of the

FIG.2.3VELCITES AD DSPLCEMNTSslower detonat'ion velocities, oxy -

OF. . SO~TINSADDSPAEET acetylene gas (50/50 mixture by

volume) has V =3 mm/lsec so

that 0 ft 9 . Taking a large strain

of e = 0.08 the ratio v/V = 0.045. Hience the maximum displacement

is approximately y z0. 045 x , where x is the load position, or about

5 percent of the distance traveled by the load. Uring the sheet explosive

FL 506D with a detonation velocity of 7 mm/hisec this relation becomes

y=0.019x and e Z0 .

10



Figures 2. 3(c) and 2. 3(d) show the velocity and displacement

distributions along the string according to (2. 10) and (2. 8) with

c = nV (n> 1). For no value of n is the line yt/v = 1 approximated

for 0 - x/ct S 1/n so that simulation is net possible when the load

moves subsonically relative to the string wae velocity.

2.3 MEMBRANE THEORY

An infinite stretched membrane is subjected to a ring load of

magnitude P per unit length of circurnfercrice (Fig. 2. 2). The radius

of the ring increases at a constant velocity V . Choosing the origin

of the radial coordinate r at the starting or detonation point when the

time is t = 0 , the equation of motion, initial conditions and boundary

conditions are

-4+ 6(r-Vt) (2.11)
br c at Z mc

y(r, 0) t (r, 0) 0 (2. 12)

0(0, t) Lim y(r, t) 0 (2.13)

r -4 cc

where y is the deflection, m the mass per unit area of membrane

and c = (S/m)1 / 2 is the membrane wave velocity. S is the tension

per unit edge length.

Let ,(X, t) be the Hankel transform of order zero of the function

y(r, t). Then applying such a transformation to Eqs. (2. 11) and (2. 1)

gives, with the aid of (2.13)
d2-

t+ c = __ Jo(k Vt) (2. 14)

(, 0) 0 (2. 15)

11



The solution of Eq. (Z. 14) satisfying conditions (2. 15) is

t
i (>,t) :PV

= . f sincX(t-,)Jo (XVTI)dn (2. 16)

0

and the inverse Hankel transform of (2. 16) is

t

y(r, t) - PV J(rX) f sinck(t-n)J (VTI)d-dX (2. 17)0 0

Reversing the order of integration in (2. 17) and setting

x ct (dx = ctd), p = Ti/t , a = r/ct and V/c yields

Z(d, IdL J(x)J (OLx)sinx (l-L)dx (2. 18)

w 0 0
~with

z = ymc /PVt

In [2. 3] may be found the following results:

0 0 <y<b-a

f 0 (ax) J 0 (bx)sinyxdx /2 abl P 1/ 2 (A) b-a < y < b+a

0

1/Z 0-1/2(-A) b+a <y <

rr(ab)

where 0<a<b and

2A - (b + a. y )/Zab (2.20)

12



In (2. 19) P_1/2 and Q-1/2 are associated Legendre functions
of the first and second kind and they are related to complete elliptic

integrals of the first kind through the following relations.

P- 1 / 2(A) 2 F, (1/2, 1/2; 1;(I-A)/Z) = 2/TrK(/(I-AI ) -1 < A < 14 2
Q_1/2 (-A) =r/2 F (1/4, 3/4; 1; I/A 2 ) = (2.21)

/I(-A) K /(1-A) < A < -1

where F1 is a hypergeometric function.

Before applying the result (2. 19) to evaluate (2. 18) the latter

should be rewritten in the form
[U

rf
-(O. f )=[ + fLdilf (1-g4dx (2. 22)

0 a./B 0

In the first double integral of (2. 22) 0 9 SI 19 a., while in the second,

a. t B .L Making use of the relation (Z.21), the result (2. 19)

becomes

0 o < I "j < 8-A t OCL <4 < 4B[ 0<1- &JC.-8, 0<08&<Ca1OI < I -&<O-8 O< p<OI

0o(,X)jolLxlslnll-lxdx 2 ra,! C-ft<l-pg +L O<01<a

~0

. l~epil, lK(k2 ) o.+ e L< 1-j<-

13
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where the moduli of the complete elliptic integrals K are

k [(l-A)/21 1 /2

and

k [2(1-A)]1 1/2

in which

.1 A = + 2 IL -142 2a/

from (2. 20).

Substituting the appropriate result from (2.23) in the integrals
(2.22) leads to the following results

I < 1L</2ya) - I, _zT T

O<0<c<1 z = Ill -ll ( + I2 (v) (2.Z4)

0 < l < Cx<l M,(a) I1/ 2  z = I 1-CL)- I(-C) + 12 (1-M)

where

I 140 f t& Klkl~l

0

I1 f kK~kad p
0

14
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From the deflection expressions (2. 24) the velocity distribution
2

is readily obtained. En, fact, differentiation of y PVt z/inc gives

a PV (225

and so expressions (2. 24) have to be differentiated with respect to CL.

Singularities -arise in this operation but are combined to be eliminated

by considering all limiting processes in the Cauchy principal value

sense. Suistitution of (Z. 24) in (2. 25) then yields the velocity distri-

bution in the form

1< < ina 3z I2~ c(Ll/2[I (41 CL (z 1) + (a+1)1

2(0-1)

1(./2[l+)4j

+ TTl+Ojl)/2

anc 3z 1- 1_/_1-_1 I<CL < (2.26)- (PV t T~~r 3 B(70 TT

whe re

0

1 4 ('L J4 {k K(k?)d.L
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It is of interest to give the velocity expressions for the center

of the membrane since they can be obtained explicitly. Setting r = 0

in (2. 17) and continuing the derivations as before leads to

I -{rr/-sin' 1 (1/1/}/(2- M 1/(-) > I

~2
m 1/ 3(0, 1t 1/3~PV

{cosh' (1/0)} /(1_0)112 - /(1 _ <

(2. 27)

Figures 2. 4(a) and 2. 4(b) show the velocity displacement

distributions over the membrane according to (2. 24) and (2. 26) when the

force is moving supersonically relative to the membrane wave velocity.

The diagrams have been drawn for the case V = Zc (Z =2) but the forms

are similar for all the supersonic cases (0 > 1); the higher the value of

* the flatter the velocity curve. Figure 2. 5 shows the velocity for

8 5 . As in the representation -f velocity and displacement distri-

butions for the string (F, g. 2. 3) the velocity v used to render results

dimensionless is the velocity that would be acquired by all the elements

if they were disconnected from each other, that is, v = P/mV . Hence

good simulation of impulse applied instantaneously ove: the circular

area swept out by the detonation front is obtained if the curve yt/v

approximates the line yt/v = I (myt/t) . Additionally, for good

simulation the displacements acquired while the load i acting should

be very small.

Figures 2. 4(c) and 2. 4(d) show the velocity and displacement

distributions over the membrane according to (2.24) and (2. 27) when

the force is moving subsonically relative to the membrane wave -

velocity. The diagrams have been drawn for the case V a c/Z (B i IIZ)

but the forms are similar for all the subsonic cases (8 < 1). Because

of the significant disturbances running ahead of the load, good simula-

tion is never possible with subsonic loads. Figure Z. 4(c) shows that

the line yt/v = I is not approximated.

16 .



yt'h In all supersonic cases the
maximum velocity occurs under

1.0---------------------------the load at r :-Vt and the minimum

z, velocity is the velocity in the region

.5 <r <ct. The maximum and mini-

Psz mum values of the ratio ye/v are
P '*T respiectively
20

(a) VELOCITY DISTRIBUTION -SUPERSONIC .2 /(82-1)
Y/vt

and

0 2

0f 1.0 /(82.4)

(b) DISPLACEMENT DISTRISUTION-SUPERSONIC
Table 2. 1 list& values of

ytvfor several values of 8 and
shows the extent of the simulation. 1
Although the minimurm values of

Pax. *. /v require high values of 0

before they approximate unity, the

WC VELOCITY O'ITR3UTION -SUBSONIC radius of the central portion of
~i~t membrane moving at this velocity

is 1/0 times the radius of the

loading circle,

As a practical example
o 0S ( consider an aluminum membrane

.. ~with a mass density P 2 0. 00025'

FIG 2. VEOCIIE A~ DIPLAEMETSlb -soc ipstretched to a stress
OF MIEMBRANE of a' 50. 000 lb/in .The wave

velocity ca (S/in)1  0c/0)

is then about 14, 000 in/sec or about 0. 355 rnm/p1sec. The detonation
3 veiocititt of oxyacetylene gas (50/50 mixture by volume) and sheet

explosive E~L S06D are approximately 3 mm/lgsec and 7 mm/punc

17



Y,/v

1.0 . . . .

44

0 1.0 2 .0 3.0 4.0 3.O"-ar/ct

FIG. 2.5 VELOCITY DISTRIBUTION ON MEMBRANE 9 -V/c -5

giving values for 8 = V/c of about 9 and 20 respectively. From
Table 2. 1 the minimum values of yt/v corresponding to =0 and

j20 are low by about 14 vercent and 7 percent, but exist oaly in central

circles of radii 1/9th and 1/20th of the loading circle. The less the

initial stretching of a membrane (ox string) the higher is the value of

* for a given explosive, and hence the better is simulation.

To estimate the deflections which may exist while the load is
still acting on the structure the initial kinetic energy is equated to the

final plastic work, assuming the latter much greater than the elastic
strain-energy capacity of the membrane. If each element has a final

symmetric strain of e , the yield stress is ay and the membraneI y 2depth is d , then the energy equation is approximately mv /2 a 2aycd.

Now m = d .and cy = ( /0) /2 is the maximum wave velocity iniy
the membrane, so v = c 4 c and v/V =.A4/4 y where y = V/c

y y y y
For a strain of 4 percent and B = 9 the ratio v/V = 0. 045 so that,

yapproximately, the deflection i y = 0. 045 r where r is the radius

of th~e loading circle. The larger the value of 8 the smaller the
y

initial deflections and hen ' the better the simulation.

18I .s
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Table . 1

MEMBRANE-MAXIMUM AND MINIMUM VALUES OF yt/v

(y t /v) m a V
22/Vmax

0 = V/c = 2 _ 1) yt mi
,0 

/(0 

i

2 1.333 0.527

5 1.042 0.751

10 1.010 0.861

20 1.003 0.926

50 1.000 0.969

100 " 0.985
200 " 0.992

500 " 0.997

1000 " 0.998

2.4 CONCLUSIONS

It can be concluded from the results of the above analyses for

strings and membranes that, for good simulation of distributed

impulses with explosives, the detonation velocities V must be greater

than the wave velocities c . The higher the velocity ratio V/c , the

better is the simulation. For both the string and membrane values of

V/c greater than 20 give very uniform "initial" velocity distributions
and, provided the required final plastic strains are not too large, gives

small "initial" displacements. Values of V/c greater than 20 are

certainly quite practical.

The actual uniformity of the initial velocity distribution can be

seen in Fig. . 3(a) for the string and in Table 2. 1 (with aid of

Figs. 2. 4(a) and 2. 5) for the membrane. Displacements of the string

and membrane acquired during loading may be estimated by the

19
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formulas yZcxIB and y 4erIs respectively where c is the

fbnal strain. x and r are the load positions, and 5Y = V/c is the
y y

maximum wave velocity.

The results in (2. 1] and (2.21 indicate that it is desirable to

detonate explosives away from supports to minimize their influence

while the load is being applied.

ZOI
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3. DYNAMIC BUCKLING OF RECTANGULAR PLATES
IN SUSTAINED PLASTIC COMPRESSIVE FLOW

3. 1 INTRODUCTION

Dynamic buckling during sustained plastic flow has been described

previously for cylindrical shells [ 3. 1] under inward radial impulse and

for rods under axial impact [ 3. 2]. In this section an analysis is pre-

sented for rectangular plates under sustained in-plane flow, and the

predicted wavelength is shown to be in reasonable agreement with

experimental results.

3.2 PRINCIPAL FEATURES OF THE PROBLEM

A simple rectangular plate, flat or nearly so, is made to flow

plastically for a short time by sufficiently large, uniiorm, in-plane

stress, with three.components 011, z 01 (Fig. 3. 1). There are

non-zero plastic strain rates, related to the stress through the Prandtl-

Reuss equations ([3.3], p 3 9)

i'I Xzz = 9 p (3. J)
1= 2'I' 2 22 12 12

elastic deformations being ignored. Primes denote deviatoric com-

ponents throughout.

0 _

FiG. 3.1 NOTATION
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While this in-plane flow is proceeding, there may also be small

flexural motion in the transverse (x3 ) direction, resulting in a plastically

buckled form. This flexure alters the strain rates, except on the middle

surface. Butit is postulated that it does not cause reversal Of atia.li-

rate, so we are concerned with loading only, in the sense of plasticity

theory. This is the type of flexural buckling envisaged by Shanley [ 3. 4]

for the column, and considered for the plate under uniaxial compression

by Pearson [3.5].

IIn particular the transverse motion of the plate introduces

differences between the strains, and strain rates, of a point on the

upper face of the plate and the point below it on the lower face. Then

the strain-increment vector of the flow rule is not the same for the two

points, and in general the directions will be different. The representa-

tive points on the appropriate current yield surfaces must then be such

that the normals are correspondingly different, implying a stress

difference which can appear even if strain hardening is absent. This

can not occur for the one-dimensional stress of the column. If there

is no strain hardening, flexure of the column can occu., without inducing

bending moment. In the plate the stress -differences imply bending

moments and also, in general, twisting moments.

The strain rate for -L lower-face point may be expressed by

+ AiP, and for the upper-face point by i - ARP . The plastic

parameter is X for the middle surface, but k + ak for the lower-face

point and X - A for the upper-face point. With a similar notation for

stress, the Prandtl-Reuss equations for the lower face are

•j I ij
cP'j + 5 pD :(X + AX')(oi + Ai

and for the upper face are (3.2)

-? .-
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We take these for the in-plane directions only (i, j = 1,2). Eliminating

21 we have

Z~p = (X+ aX)(a.'. 8a - (X= - ;)(a&. =-a

1313 1313 1

The difference quantities however are to be small, corresponding to

small flexure, which must prevail at least in the earlier stage of the

motion of a nearly flat plate. These relations will accordingly be

linearized to

S= .'. + 0.j A ,.

Thus the relations consist of

AC XzAz + (3 A (4)

5p

AC2 X&o$+jA (3.5)

By elimination of AX , (3.3) and (3.4) yield

11- (---- - --- --) (3.6)

1l 022 O1 022

Adding (3. 3) and (3. 4), we obtain a symmetric equatic.-. Combining

this with (3.5) to eliminate i , we have

Ni11 22 + A6  'I I + ACUz 13 7

11 202? °12 °11 + 22 12

25
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The unperturbed flow is regarded as given. This means that the

strain rates in (3. 1) are given, as well as the stress, and therefore

is given. It will be evident that the effects of strain rates introduced

by some buckling deflection w(x1 , x2 , t) on strain-increment vector

directions will differ according as the original strain rate is large or

small. The original strain rate is therefore a necessary part of the

specification of the state from which buckling occurs.

Now (3. 6) and (3. 7) provide two linear equations relating the

unknown stress differences Al' A O to the strain-rate
~differences AiPll ?P2 I P2

In the next section we obtain a third linear equation from the strain-

hardening law. The three equations will then play a part similar to that

of moment-curvature relations in elastic plxte theory. Combination with

the equations of motion of the plate element then results in a differential

equation for the deflection w alone.

Experimental results reported later in this paper, and interpreted

by means of the present theory, ar. all such that the observable defor-

mation is predominantly plastic. For this reason, and to minimize

complications, we now assume that elastic deformation can be entirely

neglected. Then the superscript p can be dropped in (3. 1) through

(3.7), and we can further write

h h w ha - h a (3

If the plate is not initially flat, the initial ordinate of the mid.

surface will be denoted by w, (xi ) , and then w means the observable

deflection, the additional ordinate, at time t

Z6



3.3 ADAPTATION OF A STRAIN-HARDENING LAW

The strain-hardening law to be employed here is

a H( de) (3.9)

whe re

S/23 ~.(a , dc -3 (dij de.) ; i,j 1,2,3 (3.10)

define the positive "equivalent stress" and "equivalent strain increment"

corresponding to [ 3. 3] p 26 Eq. (14); and p 30 Eq. (16), except that

the present notation omits bars. The integral in (3. 8) is path-dependent,

and the strain paths are not the same for different elements of material

on the same thickness line.

In the present problem we regard the transverse shear strains

£23 ' £31 as negligibly small, supposing that thickness lines remain

normal to the middle surface and straight, as commonly done in thin

plate and shell theory. Then, in view of plastic incompressibility,

we can write from the second of (3. 10),

(de) =L(dell) + (de ) + dc.d 2 + (d 2(3.1)

The differentials in (3. 10) are now taken specifically as those pertinent

to the midsurface, and occurring in a tirne increment dt

For the lower surface the corresponding strain increments are

de A, h. t dcd (3. 12)
11dC 22-'.X 22d dc1  1!.P12d

where

2 /wIx2  a'vaxa (3.13)
1 1 22 2 1z

27
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Writing dc, for the equivalent strain increment at the lower

surface, we may evaluate (de) 2 from (3. 11) by introducing the

replacements (3. 12).

We have already, in deriving (3. 3), (3. 4) and (3. 5), treated the

difference terms introduced by the flexure as small in comparison with

the terms of the dominating flow. Correspondingly in (3. 12) the flexural

w terms will be supposed small compared with the midsurface terms.

Then the squares and products from (3. 12) can be linearized with respect

to w. We find

(de )2 = (de) 2 - hdt[dcll( l 1+ d2 2  d1

(3.14)

For the upper surface (de u is obtained by changing the - to + .

We apply the law (3.9) separately to the lower and the upper

surfaces, and wish to obtain the difference

=fdc -f de U(3.15)

which defines Ac. From (3. 14) and the companion expression for

(deu)2 , we have

(dec) 2  (deu)2 (dc+ +dr )(dc -de)

(3.16)

= -hdt~de 11( l!+ 22) + .l

ii
B.t

de + de 2 de (3. 17)
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Introducing this in (3. 16), and converting to rates by inserting dt as

required, we find
4 •1I

de -dE = hdt ) + 2(2+-l) + 1 (3. 18)
u i ~d Le. 1 1 +M 2 2 , 22( 22 + 1 11

and now (3. 15) can be written as
t

3 1 (+l11+ 42. (izz+ 1  1 2 ]dt (3. 19)

0

This becomes much simpler if the ratios jiI1 , , 2 per-

taining to the midsurface flow, are independent of t throughout the

motion. In general the Levy-Mises relations,to which (3. 1) now reduce,

imply

e.. 3c'.
~= _ (3.20)

We now suppose that the imposed stress components a 11 a22

are maintained in constant ratio throughout the motion. This implies

constancy of the right-hand side of (3. 20). Then the ratios etc.
in (3. 19) are in fact constants, and the integration can be effected b;

removing the dots on the K Is . Thus (3. 19) becomes

A= -h [a( V+ 1 12 2 ) + 8ll)+YKl 2 ] (3.21)

where I I I

11 °11 2 22 - 2 12 ,12-3 - Iz Y = o ; x 3

(3.22)

2 2
. a w/,lx , etc.

Mand
11 + 022 - !1022 +3 CT2) (3.23)
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The quantity ZAe , expressed by (3.21) in terms of w , shows

how much further along the equivalent-stress-equivalent-strain curve

(3. 9) the point for the lower surface is in advance of the point for the

upper surface. The difference in the values of a for the two surfaces

is given by the differential form of (3. 9),

2Aa = 2H'Ac (3.24)

and we shal. take H' to be constant.

Again with reference to the experimental results we seek to

explain, and for brevity, we now restrict the analysis to the case

a 02 0. Then the first of (3. 10) yields

2oa~o= (2011 -22) 1 1 + (2122 - 1)2 (3.25)

Now (3. 24) becomes, with (3.25) and (3.21)

(2011" 022),1011 + (2a2 2 -a I)Aa 2 2 =2H 'h (11 + 2K

(3.26)

+

This, and (3. 6) (3. 7), form a set of three equations, which are linear
relations between the stress differences 0 ,12 and the

derivatives of w [in view of (3.8)].

Since we contemplate small stress differences occupying only a

small segment of the line represented by (3. 9), and there is no un-

loading, the variation of stress through the thickness may be taken as

linear. Then the moments per unit run M1 1 , M22 , Ml2 are given

by

h 2 -O 6M11  , h2 = 6M 22  , h2AC12 6M12 (3.Z7)
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We rewrite (3.6), (3. 7) and (3. 26) using these, and (3. 8). Then

(3. 6) becomes
3

MIZ (3.28)

(3. 7) becomes

h3
a 22 Ml- OllMZ = - -. _[(2OZa-oll) l1- (211 -az22) .221 (3.29)

l2)

and (3.26) becomes

(2a1 1 -a 2 )M 1 1  + (2o0 22 -a 1 1 )M 2., = - . h t(i 1 2 " 2  +O(K22+2. I,)]

(3.30)

In (3. 30) we can put 11' = 0 for a perfectly plastic material, and still

obtain non-zero MII , MZZ from (3.29) and (3.30). These reprvsent

the stress differences induced by movement of the stress points on the

now unchanging yield surface, referred to in Section 3. 1, and depending

on the curvature rates.

The solutions of (3.29), (3. 30), for MII, M22' are

FMil h 3  (02 1
- e 2 4~(ZzOldll -('11roaz)&zz[2 z IPl

22Z~ 24X
(3.31)

as t0.- "directional" moments, and to the terms o the 2nd line. pro-
.. ,.portional to Hi as the strain -ha rde ning moments.

31
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3.4 EQUAtIONS OF MOTION
I

A pl3ate element dx dy is subjected to uniform stress aa1 22

together wvicb the moments M11 , M22 , M1 2 , and transverse shear

forces per unit run Q1 1 Q2 necessarily associated wich these. We

neglect rotary inertia. The equations of motion take the welL-known

forms of platt! theory

z ax1  '.x 2

MI M12 /- 22 12

Swhere p means density.

By elimination of Q1 , Q2

zz .z z
MI 1  aM 1 2  8A 2 (w+w ) (w+Wo)

+ 2 + *-~- -a 1 h +a-- h-.--r

ax 1 2 ax,;6 a at

In this we now use (3. 31) for V. M2 (3.28) ior Mi , and convert

it to a differential equati.n f(.& w alone to obtain

h {(zz )Z + Zo2 11 (Z-i-i )

4 [ -- o -- +i €- ---- i -[ --. ..c ...-.

3
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All the coefficients are constants, except for \ in the first

line. As we have observed in Section 3. 1, i must be specified, and

this is equivalent to , ecifying imposed strain rates e I 1 22 as

weil as imposed Ftresses c11 , C22 * Since we have postulated slight

strain hardening, it is reasonable to treat C 1 1C2 as constant

throughout the flow. We now postulate farther that the imposed strain

rates are to be constant, and therefore X will alio he constant. Now

(3. 32) is a linear equation with constant c'.efficients. The solution for

a rectangular plate with simply supported edges is examined in

Section 3. 5 below.

Since from (3.22)

=C 2c+ zz a-- -- 0+ 2 8

we ,tln rewr,"t (3. 33) as

h '3 -'a IZ 8'w 11 2 2la w Z
",,-- Z -Z7-"

-~~1 4 l7z~p 2

11 the compressive flow and the buckling are occurring sio~iy. the

inertia term may be negligible, 2ut it is not evident that the first ! n

of terms, may be dropped, since k appears in the denominator and is

small fur a small flow rate. Thc rmagnitudes of the "time derivatives

of w will evidently depend on the initial displacement and v-elocity.

4t3

A_
2 , .
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3.5 THE SIMPLY SUPPORTED RECTANGULAR PLATE

We take 0 I 
=  2 22 - 0 , corresponding to uniaxial

compressive flow. Then 0 aI" The differential equation (3. 34)

reduces to

2 5 5
h bw W5 w

4 + 4- + 8 Z!
1 2 1 2

I aw 2w0
+ h H , --- + ao -77 + P .T=x- (3,35)

If

w°= rmSfl- --sin--- (3.3&)

0e may take

mrrx nrrx
w = E W mn(t)sin a 1 sin (3.37)

This makes MIl , M2 2 in (3. 31) zero at the edges x- 0, a; x 2  0, b,

so the edges are simply supported. Then (3. 35) requires

h2 [M()4 + 4( )4 + a2 ( n 2

12 +'-- mn

+ ( hrnr)2[ ,hHe( m)++-a-[ z7 "2 l , = a, (r..)z
Ira a m]Wn W oamn" ' 3.38)

For suitably limited initial deflection w ° and velocity 'v (x1, x2 0 O)

the time derivatives of Wmn can be very small. These would be the
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circumstances of a "static" test with a increasing rather slowly to a

critical value. The result

O o in (3. 39)
mn . 2 M)2r

-- h H (-a.)

then indicates a critical compressive stress

S=1 h2 /.mnT2

I 2 H 2 (3.40)

it is remarkable that this is independent of b/n , the half-wavelength

in the direction transverse to the load. For m = 1 it is the simple

tangent modulus formula.

The uame critical condition is obtained from (3. 35) if we take

w in the form

mrTx 1
w = W sin - (3.41)m a

i.e., independent of x

Since G2, = 0 , the value of M.2 given by (3. 30) consists of the

directional part on)y, and is therefore very small in the "static" test,

for (3. 37) or for (3.41).

Returning to the dynamical problem of Lhe simply supported plate

with the deflection (3. 36), we suppose that the imposed strain rate

I is large compared with any a..ditional strain rates introduced by

w . Then the directional moments in (3. 31) could be neglected com-

pared with the strain-hardening moments. The first line ot (3. 34), and

that of (3. 38), disappear.

35
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Considering an imposed co much larger than the statical

critical value (3. 39), we shall have (3. 38) in the form

W .,ii)Z[ I ,m o . 2(.2

Wmn h'H (---')a ] Wmn=- amn -a (3-- 2

It is convenient now to change to a dimensionless deflection co-

efficient w mn a dimensionless time r , and to introduce a dimension-

less constant s , defined by

W Wren - It H -2 0o a2Wre Tr =--2 t , (3.43)
mn V/79 T

Then (3. 42) becomes

dw 2 22 ad -mn a 2(s2 - m 2 )w 2m 2 amn (3.44)

dr mn h

For m < s the solution will contain hyperbolic functions of time

which may becurne large during the motion.

For a plate initially perfectly flat we have amn = 0 , and any

deflection is due to initial lateral velocity, Then if

mrtx nrrx2
w(X1, X2, 0) = 0 , r~xp fw X1 i0) = v 0 EOmnsin-- sin= (3.45)

the result obtained after integrating (3. 44) is

trv~ Z slnh p * nx mTrx,
(x = V ( E nni m T*sin-- • sin

Go r I mTTX mTrx

+ E - mnsin p T sin - sin - (3. 46)

n=l m=l Pm mn o1" a

where

Pm > 0 p2 n 2 2 -m 2  , , r <s <r + 1 (3.47)
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This shows that the series for the deflection at time t is obtaine6 from

the series in (3. 45) for the initial velocity by applying to each coefficient
-1a magnification factor (but for a constant) which is either p- sinh pm-1

or p sin pmT , the former being potentially the greater. Examining2
it further we observe that if s is suitably large compared with unity,2
p 2as a function of m will be small for m = 1 and for m close

to a (i.e., m = r), but will have a maximum at m = s/ /2", with the

value pm max .a2 / 2 . The hyperbolic magnification factor itself, as

a function cf m , also has a maximum for the same rn , and this

maximum is

(p -sinhpmT)inhs (3.48)m m -maxnh7 s

This can become very large as T" increases. If it does, there is

conspicuous magnification of harmonics having m in the neighborhood

of s/VZ , regardless of n

To illustrate the magnitudes involved, we consider an aluminum

alloy with

C; = 2.5 x 104 psi , H' 1.3 x 105 psi (3.49)
0

Then from (3. 43)

22 1 a 1 a s 1 a

TT h V.

,Evidently there are hyperbolic terms in (3. 46) when a/h is

greater than 2. 07 (i. e., s > 1). Much larger values of a/h can allow

comspicuous magnification of harmonics if (3. 48) can become much

larger than unity. This of course depends on the duration, the range

of - in which the compressive flow stress 0 is maintained and no

strain-rate reversal has yet occurred. The most magnified harmonic

has m close to m 1 as given in (3. 50), and the corresponding half-

wavelength is

a 2.94 h (3. 51)
m 1

37

i T



The bar problem analogous to the present plate problem was

treated earlier [ 3. 2]. The most magnified wavelength for a bar of

rectangular section of thickness h is the same as (3. 51). Thus, the

hinges on the boundary conditions donot affect the wavelength.

If the initial velocity is zero, any deflection is due to initial

deflection w0 . Taking w° in the form (3. 36), we have again (3. 42)

for Wn in (3. 36), or equivalently (3. 44) for w in (3. 43). Themn mn

appropriate solution is now

a mrxI nritx2
w(xlx 2 ,t) s2 nn cos -s1sin- sin-V- (3.52)

m= n=l s -m 

where coshis read for m < s , cos for m>s .

The magnification factor applicable to the rnn term of w0 is

now

- (sosh p - ) (3.53)

This factor has occurred previously in the treatment of the

bar [3. 2). Its discussion is repeated here for convenience. Supposing

that s is so large that there are several hyperbolic terms, we consider

(3. 53) as a function of m2 . It has a maximum where

s2 coshp p'- i

2m " rn T sinhpm (3.54)

Conspicuous magnification depends on cosh p m becoming much

larger than unity. But in this case sinh pmT has an approximately

equal value. Replacing the right-hand side of (3. 54) by - 1 /pn , we

may then observe that pint must be -onsiderably larger than unity,
2

so I/Pm T is small. Consequently (3. 54) will require a value of m
slightly greater than s 12 . Taking sZ12 as an approximation, the
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greatest magnification f.-'"ir (3. 53) becomes approximately 2 cosh 1/28 T.

As was shown in [ 3. 2], this in fact becomes large in durations of the

order of 100lisec.

Since the magnification factor is greatest for m close to s/,

the most magnified wavelength is the same as in the case of initial

velocity perturbations.

3.6 COMPARISON WITH EXPERIMENT

Experiments were undertaken in which square tubes of aluminum

(6063-T5) were projected end-on against a massive steel, plate. Each

side of the tube behaved as a plate in uniaxial compression. To facili-

tate acceleration of the tubes, they were mounted on round rods which

could be fired from a standard rifle. Several specimens are shown in

Figs. 3. 2 to 3. 9. As indicated in the figures, several combinations

of boundary conditions were used.

The half-wavelengths from'the specimens of Figs. 3. 2 to 3. 9
are listed in Tables 3.1 - 3.4. The 1/16-inch-thick plates (Tables

199 ft/sec (SAC-3)

300 ( ¢ -2)

400 i SAC -1!
OP 49" 22

FIG. 3.2 1/16-INCH WALL BY 5/8-INCH-SQUARE ALUMINUM TUBING BUCKLED
-BY AXIAL iMPACT WITH A MASSIVE STEEL PLATE
AT THE INIACATED VELOCITIES

39
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3. 1 - 3. 3) show a variation in half-wavelength with boundary condition

from 0. 26 inch for 1/2-inch-wide plates, hinged or clamped on the

long edges (depending on the response of the adjoining plates), to 0. 61

inch for plates which are free on the long edges. As indicated by the

large buckles in the second and third specimens of Fig. 3. 2, the wave-

length does not appear to depend significantly on whether the long edge

is hinged or clamped. The 1/8-inch-thick plates were tested with

hinged or clamped boundaries only on the long edges and show a half-

wavelength of about 0. 45 inch. From (3. 43) the theoretical half-

Wavelength X corresponding to the most magnified harmonic m-

is

- a _ H h (3.55)

UNDE FO RMED

L U

84 f t/sec (A

-344 (LAC 3)

FIG. 3.3 1/16-INCH WALL BY 7/8-iNCH-SQUARE ALUMINUM TUBING BUCKLED
BY AXIAL IMPACT WITH A MASSIVE STEEL PLATE
AT THE INDICATED VELOCITIES
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82 f t/sec (2CSC- i)

107 (2CSC-2)

GP 4999 24

FIG. 3.4 1/16-INCH WALL BY 5/8-INCH-SQUARE ALUMINUM TUBING,
WITH TWO OPPOSITE CORNERS CUT, BUCKLED BY AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES

118 ft/sec (2CSC-I)

123 (2CSC -2) :i- 49" ?s

FIG. 3.5 1i16o-INCH WALL BY 7'8-INCH-SQUARE ALUMINUM TUBING,
WITH TWO OPPOSITE CORNERS CUT, BUCKLED 5Y AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES
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59 ff/sec (4CSC -3)

(4CSC -2)

S (4CSC - I

121

GP,4399 20,

FIG. 3.6 1 16-INCH WALL BY 5,8-INCH-SQUARE ALUMINUM TUBING,
WITH FOUR CORNERS CUT, BUCKLED BY AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES
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ICO ft/sec (4CSC-3)

115 (4CSC-2)

199
e ( 4CSC - 0

FIG. 3,7 1 'o-INCH WALL BY 7 8-INCH-SQUARE ALUMINUM TUBING,
W!TH FOUR CORNERS CUT, BUCKLED BY AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES

4
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(SAC -

(SAC 2)

598 flsK(SAC -3 - w'
,p 444 a

FIG. 3,8 1 8--INCH WALL BY 3 4-INCH-SQUARE ALUMINUM TUBING BUCKLED
BY AXIAL IMPACT WITH -A MASSIVE STEEL PLATE
AT THE INDICATED VELOCITIES
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FIG. 3.9 8 $INCH WALL BY !-'NCO UARE AL.WNM T;N fi C~ K

IPY AXIAL .MPACT WIT~ A MAS.&S:TVE\ ILAT
A THE 'NDICAT~ E LOC
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(, IiVEI)HAI- -WAVFIKNG nIS FOR 1/ 1-INCH- MIlICK FLA I'ES

Plate I rpac t Axial -a____-___ g (inch) Overall
Spk .l Width Velocity Shortening Side i' X Ac rage

(in, h) (ft/a. c) 17) 3 4 5 6 7 8 9 10

SAC- I |2 1'?9 i0 1 ._4 is .2 1 27 Iz

(Fig. 1.1) z 31 .23 .30 35 .30
3 3. .21 .19 9 .24 .48 .24 zz :II.26

.3Z .31 .45 .25 . 35 26.3Z .Z6

SAC-Z !/Z 300 23 1 26 Z9 .24 Z6 .21 27 Z9 .26
( I 1,, 3.e1 2 23 .35 .27 . 25 .19 .30 .21 I ,26

3 5 .32 .37 27 23 .21 [ .27
4 Z6 .31 .31 33 .28 .19 .zo .19 .22 .25 .26

-- SAC-I 112 400 16 1 30 .3Z 3

zFig 3.2 2 .30 31 30
3 .28 35 .27 .24 .44 32
4 .l .32 .32 .31

LAC-I 314 184 7 I .32 37 .36 40 .37 34 32
(Fig.2 .38 .41 .Z9 37 .28 31

3 .43 .52 .48
4 .36 .41 .41 39 .45 33 39 .38

LAC.-. 314 310 16 1 .46 .47 .33 36 .48 .41 42
(FIg. l.) 2 .42 .46 .37 40 .46 40 .35 41

3 .39 ,39 .34 42 .43 • 39

4 .47 .44 .42 .42 .49 .44 1.3 43 .41

1.51C-- 3/4 344 30 1 .43 37 32 ,.37 .381 11 .52 34 .38
(Fig. 3. 3) 2 .31 :38 :44 .44 .48 .32 .24 .27 .3S .36

3 .52 7 .47 .40 .4 .25 .35 .34 .
4_ _ 43 3 .32 4 .2 9 .30 .27 .28 .3 5 14 3 6

Table 3.2

OBSERVED HALF- WAVELENGTHS FOR 1/ 16-INCH-THICK PLATES

WITH ONE FREE EDGE

Plate Impact Axial Half-Wavelength (inch)

Specimen Width Velocity Shortening Side O Si Ii X 3. ) Average

(inch) (ft/sec) (%) X 3 4 5 6

1 131 .o-. I I

2CS('-1 1/2 82 z 1 .46 .50 .52 .49
(Fig. 1.4) 2 .48 .42 .44 .45 .45

3 .46 .34 .45 .4Z
4 .36 .3Z .40 .39 .37 .43

2CsC-z 1/2 107 1 .47 .47 .38 .57 .47
(lKg. 3.4) 2 .49 .41 .42 . 7 .41 .42

3 .31 .33 .41 .35 .40 .36
4 .41 :28 .4 I.3 .40 .37 .14 .39

2CSC- 1 1/4 118 4 I .45 .4 .44

(Fig. .5) 1 .47 .44 .46
3 .60 .67 .9 .59
4 .sl .48 .50 .50

CSC - 1 1/4 121 3 I .47 .45 .16
(Fig. Z.) 2 .47 .4 .39 I4

.43 .45 .42 .:11I .45
4 .5 .S 4 _i_ .57 .48
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Table 3. 1

OBSERVEJ HALF-WAVELEN(;rHS FOR I/IM-INCH-TIICK PLATMS

WITH I'WO FREE E1G.;

Plate Im pact A xial Hal-W avelength (inch) _ j Overall

Specimen Width Velocity Shortening Side _ I X-%-; Overall
(inch) (ft/sec) (%) { 12 , K6' ;K] Average

4CSC-3 ~112 S9 1 .57 t.53 .65 s

(Fig. 3.6) 3 .61 .69 1 1 653 .67 S7 Sl.58

4 .71 64 .61 .60 .64 .6

4CSC-3 -3/4 100 3 1 .38 f 52 .67 .43 .56 .51
(Fig. 3. 7) [2 .48 .62 .61 .14 .56

3 35 .34 .35 .66 .65 47
4 .58 .51 .51 41 50 .51

4CSC-2 -3/4 115 3 1 .60 .59 .49 .60 S7
(Fig.. 3. 7) 2 .51 .40 .46 .44 413 .58 .6 .h 43 '9 .42 o 4 .4 8

4 .50 .42 .43 .45 _38 .35 43 .48
I 4 . _ 91

Table 3.4

OBSERVED HALF-WAVELENGTHS FOR 1/8-INCH-THICK PLATES

Plat AHalf-Wavelength (inch)Plate Impavt Axial " -, r~--~ Ove ral

Specimen Width Velocity Shortening Side OTK K K K K X ve rage

(inch) (ft/sec) (56) 1 2 3 4 5 6,'7 'S89

SAC- 1 1/2 9
(Fig. 3.8)

SAC-2 112 23 1 .45 .47 .54 .45 .47 .40 .38 .45
(Fig. 3. 8) 2 .35 .45 .44 .40 .32 i 1 39

3 .31 .28 .54 .49 .40 .43 .44 .34 40
4 .35 . 45 .49 .38 .42 .38 :321.31 39 .41

SAC-3 l/Z 578 29 1 .49 .44 .42 .43 .46 AS .28 41
(Fig. 3.8) 2 .55 .37 .45 4 35 .20 .28 .3S

3 .31 42 .4 {.38 .34 .23 .24 2 .36. 32
4 .41 48 .38 .5Z .59 .30 .45 .38

LAC-1 3/4 139 2
(Fig. 3. 9)

LAC-3 3/4 218 7
(Fig. 3. 9)

.LAC-Z 3/4 269 8
(Fig. 3.9)

LAC-4 3/4 377 is 1 .34 I .34
(Fig. 3.9) 2 .3b .34 .37 .36 36

3 .36 36
4 .4Z .43 4 ..7

LA.- 3/4 460 z0 I .49 49 49

(Fig. 3 .9) I'2 :4, .40 .62 .47 .38 4
I rR .48
4 53 41 39 .49 .49

}L
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As indicated in Fig. 3. 10, the factor H 'I ° varies considerably
from I to 10 percent strain, decreasing as strain increases. Thus,

(3.55 ) indicates that the half-wavelength should decreasc as strain

increases. This expectation is borne out by the data, as may be seen

by comparing Tables 3. 1 - 3.3. The effect of freeing the long edges

appears to be to increase the instability so that buckling occurs at

lower axial strains.

40,000

30.000 - 1.2

0 I o ooI I I I.I I

b

I I 10,000

i 0-

0 2 4 6 S 10 12
TRUE STRAIN. a

FIG. 3.10 STRESS-STRAIN CURVE FOR TUBING MATERIAL (Aluminum 6063-T5)
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In Table 3. 5 theoretical half-wavelengths are given for values

of H/a corresponding to strains in the region of interest. For

the 1/16-inch-thick plates the predicted half-wavelengths for strains

of 1 and 5 percent are 0.26 and 0. 14 inch. The observed half-

wavelengths vary from 0. 26 to 0. 61 inch. The difference is attributed

to the effects of early elastic deformations on the subsequent plastic

deformation [ 3.4]. For the 1/8-inch-thick plates the predicted half-

wavelengths for strains of 1, 5, and 10 percent are 0. 52, 0. 27, and

0. 19 inch. The observed half-wavelengths (Table 3.4) fall within the

values for I and 5 percent strain.

The agreement between theoretical and experimental wavelengths

is reasonable, indicating that the theory describes the mechanics

fairly well. The largest factor yet to be accounted for in the theory is

the variation in H'/c with strain.
0

Table 3.5

CALCULATED HALF-WAVELENGTHS

Assumed
h Buckling o

(inch) Strain H I (inch)
MH

0.062 1 0.096 4.13 0.26
5 0.35 2. 17 0.14

0. 125 1 0.096 4.13 0.52
5 0.35 2.17 0.27

10 0.69 1.54 0.19
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4. DYNAMIC BUCKLING OF A THIN CYLINDRICAL SHELL

UNDER AXIAL IMPACT

4. 1 INTRODUCTION

Experimental investigations by Coppa [4. 1] and others have

shown that thin cylindrical shells subjected to axial impact ccn hiiucle

dynamically into the familiar diamond pattern of large deflection static

buckling. The diamonds in the dynamically buckled shells, however, are

smaller than in the static pattern because higher modes respond faster

than lower ones and soon predominate the motion. Dynamic buckling

into very high-order modes (short wavelength) has also been observed

in cylindrical shells under impulsive radial pressure [ 4. 2] and in thin

bars under axial impact [4.3]. In the 4L.er probler.,, lic ;.ci hc.t

wavelengths can be attributed directly to the very high thrusts compared

to those in static buckling. In cylindrical shells under dynamic axial

thrust, however, the thrust does not have to be greater than the classical

static buckling load to produce wavelengths shorter than those observed

in large deflection static buckling. Using high-speed photography of a

shell buckling elastically under static thrust, Almroth, Holmes, and

Brush [ 4. 4] showed that the shell initially deformed into diamonds of

roughly half the size of those in the final buckled shape. In other experi-

ments, by placing a rigid mandrel inside the shell to limit the amplitude

of post-buckling deformation, they were able to keep the shell buckled

in the shorter wavelength pattern, Thus, in a cylindrical shell under

dynamic axial thrust, the modes of deformation can be expected to depend

in general upon the amplitude of deformation as well as upon the magni-

tude of the thrust.
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Th-se complications in the cylindrical shell have led theoretical

investigations of dynamic buckling toward a large deflection theory as

was found to be required for static buckling. The general procedure

has been to assume axial and circumferential buckle wavelengths and to

numerically integrate equations derived from large deflection shell

theory. The coefficients of a few terms giving roughly the diamond

buckle shape are taken as generalized coordinates and the Galerkin pro-

cedure is used to derive equations governing these coefficients. Buckling

is said to occur when the deflections increase abruptly with load or end

shortening. The procedure is repeated over a range of axial and cir-

cumferential wavelengths to find the combination that gives the lowest

buckling load. Coppa and Nash [4. 5jused a twodegree-cf-freedom system,

taking the end shortening to increase linearly with time. Roth and

....~ 4 €afourogrep-of-freedom system and a step pressure,

No comparison of these theories with experiment was made.

The drawback of the above procedure is that two of the essential

unknowns of the problem, the axial and circumferential wavelengths of

the buckles, must be assumed at the outset of the integration. To

determine the wavelengths into which the shell actually buckles, the

procedure must be repeated over and over for many combinations of

axial and circumferential wavelengths, For buckling in which the impact

stress is greater than the static classical buckling stress, this short-

coming is overcome in the present paper by using linear theory to study

the wave selection process in the early motion while the Jeflections are

still small. This allows application of the analytical procedure used in

the beam under axial impact [ 4. 31. The buckled form is not specified

a priori; instead the motion is expanded into the linear vibration modes

of the shell so that it is free to deform into its own "preferred" shape.

Initial imperfections are taken in the form of white noise and a statistical

analyses gives the expected values for the axial and circumferential

wavelengths. If the initial imperfections are sufficiently small, the ratio

of amplitudes of the preferred modes to the amplitudes of the imperfec-

tions can become quite large within the applicability of small deflection
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theory, and this dominance of the preferred linear wavelengths could

carry over into the large deflection motion.

Experiments are presented which give final buckled forms very

close to those predicted by the theory. Very high-speed motion pictures

(240, 000 frames per sec) show buckles forming during the elastic and

plastic motion and demonstrate that the time scale of the buckle for-

mation also agrees with the theory. The axial wavelengths are much

shorter than in static buckling and the observed aspect ratios (circum-

ferential to axial) are much larger, averaging about 3 compared to 1 in

static buckling. This varied considerably and in many experiments

nearly symmetric (very large aspect ratio) buckling was observed.

4.2 RESPONSE Oi' THE NORMAL MODES

In the experiments, cylindrical shells are impacted at one end by

a massive rin; which sends a step axial stress wave down the shell.

The shell buckles before any signa . is received from the opposite (free)

end so that in the theory the shell is taken arbitrarily long. Also, the

thrust is assumed uniform throughout the length of the shell, thus neglect -

ing any effects of the moving axial stress front. This was shown to be a

reasonable assumption for the axially impacted strip [ 4. 31, and appears

to be valid here also, since as shown below, the axial wavelengths and

formation times of the buckles in the strip and cylinder are quite similar.

Thus, we consider a long, thin cylindrical shell subjected to a suddenly

applied constant compressive force.

To study the small early displacements. it is Cufficient to use a

small deflection linear theory. It can be further shown that simplified

Donnt1ll-type equations give satisfactory accuracy for the present problem.

If more complete equations, such as given in [4. 81, are used.the final
equation (12) here results if terms multiplying the axial strain c = N/Eh
and terms containing (h/a)2 are omitted as small compared to terms
without these small multipliers.
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Denoting time by t and axial force per unit arc length by N , and

taking, as shown in Fig. 4. 1, x and y to be the axial and circumferential

Y "

'S.

h?

M a NUMBER OF AXIAL HALF-WAVES 4
nt @ NUMBER OF CIRCUMFERENTIAL WAVES

FIG. 4.1 COORDINATES AND SHELL NOMENCLATURE

coordinates, and w to be the radially inward displacement measured

from the initial perturbed displacerment wo these equations become

v4aw h F 0 (4. 1)

v 4t F - (4.2)

where F is Airy's stross function for mid-surface stresses produced

by the buckling. a is the shell radius, h is t0v thickness. . is the

density . D = Eh IIZ- ( ) is the flexural stiffness and V is the

operator (a /axj b2 /iy 2 ), These are equations (3) and (4) from

1 4. 71 with terms appropriate to the present problem retained.

54



Using nun -dinmens i,)na iva riab le s

. x • t (4.3)

equations (4. 1) and (4. 2) become

4 72 h a F

4 + (.4
0~F

4 ED2w 0 (4.5)
F aN

where the operator 4 is now ( /bz + z3- Z)z . and (')

To simplify the mathematics, the shell will be considered simply

supported. The edge condition at the impacted end of the shells in the

expe'iments is more closely approximated by a clamped boundary, but

the experiments indicate that this boundary condition does nut si nifi-

cantly affect the buckling. The conditions of simple support are satisfird

by

CO OD

w(. , ) Wmn(-) sin am l ... sin n r (4.6)

a a
i~n: l

wahere

(2 " : 2.12n. sn mn (4.7$)

/ m 1RYN N

San-d L is the length of the shell. The initial displacement w is aiso

enranded into a Fourier series:

fljO fl2:wo C".- , a mn *in an M sin n- (4.4)
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Equation (4. 7) is now substituted into (4. 5) and the result is substituted

with (4. 6) into (4. 4) to give the following equation for the amplitudes

W of the normal modes.ms

4
-Z O 2)2 2 EDh Om W a (4.10)

mn [m m n m Z-7 z z Z mn mmnaN(a m + Sn
m n

In the limit as L co0 , a m becomes a continuous variable and, for

convenience, n will also be treated as a continuous variable so that

in the following W (r ) is replaced by W(a., T " ) and the subscriptsmn
on a and 8 are dropped. Noting further that

EDh I 0 cl)2

a N

where

E h (4.11)
Cf--- a

-j 3(1v

is the classical static buckling stress, (4. 10) can be written

2

g+k(a, O)g = a (4.12)

where

k(L, 8)=(a 2 +82)2 -a+2 .(+ -z+zz (4.13)

and

W(a, , (4.14)g~a, 8, = )

is the amplification function or "filter" characteristic of the shell under

a given axial stress a N/h
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The solution to (4. 12) subject to the initial conditions g(L, , 0) =

(c. , 0)0 is
C1 cosh p

g ~, I- cos (4.15)If
whe re

p = kVa, S)JI/2
(p

and the hy--erbolic form is taken for k(oL, 8) < 0. Figure 4. 2 gives

example pL* of g,(a , n,) f or T = 4 and r = 8 . The dependence

of these amplitudes on the axial wave number a is similar tz that in

the buckling bar, exhibiting a pronounced hump of "preferred" modes

near a = 1/4/2. The circumferential wave number of the most ampli-

fied mode is = 0 , i.e. a symmetric mode, but there is an appreciable

bandwidth of amplified modes in both the axial and circumferential

directions. Comparing the curves for T = 4 and T = 8 we see that as

the motion proceeds, the bandwidth in both directions decreases, tending

in the limit to produce a fixed axial wavelength corresponding to the

wavenumber a 2 I1,X, but tending toward longer wavelengths in the

circumferential direction, ultimately approaching a simple symmetric

pattern corresponding to 8 0 (i.e., n = 0). If the imperfections are

large enough, however, non-linear effects would dominate before the

Isymmetric mode is attained, producing final buckles with a finite wave-

length in both directions. Buckling of both types were observed in the

experiments described below.

From the definition of k(oL, ) in (4. 13) we see that the normalized

amplification curves g(cL, , T) depend only on the ratio a/act of the

applied axial stress to the classical static buckling stress. Larger

values give faster growth and narrower bandwidths, but the general

shape of the amplification curves remains about the same for any 0/c >I.

In the next section it will be shown that the expcted values of the buckle

wavelengths are very nearly proportional tor 1 = r/ 4 C , where

r = h/qIZ(l-v ) and e = a/E is the strain from the axial thrust.
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4r4

1.02.

2.0

r*8

-1.
2.0 I..

FIG. 4,2 AMPLIFICATION FUNCTION g vs. AXIAI. AND CIRCUMFERENTIAL

WAVE NUMBERS, o; AND , FOR la~ci 2.5

Figure 4. 3 gives a plot of the maximum value of g (at the peak of
the hump in Fig. 4. 2) plotted against time for several values of a/c

As a/h -*.aD we see from (4. 11) that a No 0 so that the curve for
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C/0 a CD is that for a buckling plate (or rectangular bar if the factor

l-vZ- is omitted). For a/c 0 > 2 the time required to attain large

amplification is only slightly greater than for the plate.

400

350

300

a/a12 - CD

250

CV/'Cc 4. 0

gmaa 200
o/'za2.0

50

50

0 2 4 6 a 10 12
NORMALIZED TIME, rU-"5

FIG. 4.3 GROWTH OF MAXIMUM AMPLIFICATION WITH TIME

4.3 BUCKLING FROM RANDOM IMPERFECTIONS

To compare theory with experiment, it is necessary to assume some

form of imperfections in order to specify a(cl , anid hence to compute
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W(a, 0. r) from (4. 14). Experiments on impact buckling of bars in
[4.3] demonstrated that a good description of the observed buckles was
obtained by assuming imperfections in the form of white noise. These

allow the buckle wavelengths to be dictated by the magnitude of the thrust,

giving a random scatter of wavelengths with a mean and standard deviation

both inversely proportional to the square root of the thrust, in agreement

with experimental observations. It is expected that such an assumption

will also be reasonable in the present problem. Thus, we assume the

a(ac, 8) are random normal with zero mean and constant variance over

all a and 0 in the amplified band of interest. With this assumption,

the power spectral density of the modal amplitudes W(a, , r ) is

proportional to g 2(a, 8 , 1).

Having the power spectral density, the statistics of the buckled

shape can be computed. For the bar (4. 3], complete statistics of the

wavelengths were computed using a Monte Carlo technique. The simpler

problem of determining the mean wavelengths can be solved analytically

and will be undertaken here for the shell. From Rice [ 4.91 the expected

number of zeros in an interval (*1 , 82) of a random functian f = F(s)

is

f ds f lqI P(O, q; *)dq (4. 16)

• -O
I

where P(f. q ; s) is the probability density function for the variables

f =F(s)

dF
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For our problem we have then, that the expected number of zeros in

the direction in the interval (0 , t for a specified value of r, ard

'T is

=f~f P(0, z; r,~, (4. 17)

0 -CD

where L j = and P(w, z; T , T., T) is the probability density

function of the variables

w w(F, , *r)

and g, , are carried along as parameters. Since it has been

assumed that the initial imperfections have a Gaussian probability

distribution (or. alternately, if we apply the central limit theorem for

more general imperfection statistics) then the iinal buckled form will

also have a Gaussian distribution. Thus, the distribution function has

the form

P(w.z ;Z Tp 1 2, Z

exp - 2  W

1' where (4.18)

and <> indicates ensemble average.
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Our results are simplified if it is assumed that the imperfections

and final buckled form are stationary (in space) se that in place of (4. 6)

i' we Caa writte

w t! , ') =W n Wm(T) sin(a mg - Cm) a in (8 n TO en ) (4. 19)

tnzl nzl

where the cm and 6n are each uniformly distributed over the interval

(0, ZTT). With this assumption the statistics of the buckled form are

independent of g and , which we would expect to be justifiable for

waves at a sufficient distznce from the ends of tte cylinder. In fact,

the results of a Monte Carlo computation including end effects for the

bar [ 4. 3] which is similar in form to the cylinder, indicate satisfactory

agreement with the stationary process assumption even for the firstI ! wave from the simple support.

Using (4. 19) it can be easily shown that

40 OD 0 D
1 211 

= <w > =ff W2 1. 7 )dod = ff g2 (a. - )dad 8

0 0 (4. ZOa)

> < W WO. T )dad0uO//2,(O. .Y)dodo
(4. ZOb)

I <wx> -0 (4. ZOc)

* where

J• < a 8)> * constant

and the sums have been replaced by integral*.
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Making use of 12 0 from (4.20c) in (4. 18) and substituting the

resulting expression in (4. 17) gives the expected number of zeros in the

length t,

W " g, 22 1/2 ..
R L L(--) (4.21)

The mean wavelength, as measured between alternate zero crossings,

is simply
_ 2 t' I'l l ,1/2 " 2

X -r 2 V2 (4.22)

or, upon using (4.20) O 1/2

O/( 0C d (4.23)
a 2g (a, 8 )Odd

The mean wavelength in the circumferential direction can similarly be

shown to be
1/2f J'g(a. 8 r' )dadS

X n 01 0 (4.24)
' 0 0! 8. /rdiid/I, . 00s

Equations (4.23) and (4.24) were integrated numerically over the

area 0 s Z 0 51 2 of significant amplification and the results

are presented in Fig. 4.4. In Fig. 4. 4(a) the variation of X. and X

with r is shown. Bands have been drawn which contain the curves for

0/, Oc in the -range from 1. IZ to 4. 0. The narrowness of these bands

indicates that the most significant parameters affecting wavelength are

those given in the ,ormaliaation in (4. 3).
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Also frorn Fig. 4. 4(a), we see that the mean axial wavelength

increases only iightly with - for - > 4 and quickly approaches a

"preferred" wavelength. For ratios of C/,c, nearing unity the preferred

wavelength becomes the classical static wavelength 2 [ 2- -. The mean

circumferential wavelength, however, increases with without approaching

an asymtotic value. Thus, as discussed in the previous section, the mean

U i'u l, 1" .. ILv P .ths actually observed ir l;ioa , 'ucklis.g

will probably depend on the magnitude of the initial imperfections, which

determines the duration for which this small deflection theory is applicable.

Smaller ixnperfections can grow for a longer time and from Fig. 4.4(a)

we would expect to see longer circumferential wavelengths.

Figure 4. 4(b) gives a plot of t e aspect ratio ' . If nonlinear

effects begin to dominate at, say = 7 , and subsequent buckling proceeds

with a fixed pattern (one wou1 d expect a fixed pattern to be eventually

established, as confirmed in the experiments), Fig. 4.4(b) indicates

that the aspect ratio would be about 3. 3. This is discussed again in

reference to the experiments.

4.4 EXPERIMENTS

A small-deflection linear theory applied to the static buckling of

cyiindrical shells under end load is notoriously inadequate to predict

experimental buckling loads except for very nearly perfect Oells. Also,

the shells ultimately buckle into a form very different from the buckling

mode of the small-delection theory. It is not obvious, then, that the

simple linear thec.ry given here should reasonably predict the large

deflection dynamic buckling of such a shell. It was thought however.

that the small-deflection theory would give promise for the dynamic

problem because, once started in the linear theory pattern, the shell

would continue tg, deform in this pattern and not have time to convert to

another pattern. The experiments described here were run simultaneously

with the theoratical investigation to determine whether such a theory should

be pursued at all.
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Previous experinientors reported only the final shapes (diamond

buckies) after very severe and prolonged buckling, and showed high-

speed (about 15, 000 frames/sec) motion pictures whicii were neverthel-6s

at a speed too slow to show the early buckling process. In order to record

doa ,s " motion, tne present experimental arrangement, shown in Fig. 4.5,
incorporated three u.._.ue features: (1) the shells were free at the end

opposite the impact so that the compressive impact stress would have a

duration (at tie impacted end) of,at most,equal to the transit time ZL/c

of the longitudinal stress wave up and down the shell This allowed termi-

nal observation of early permanent buckling not obliterated by later folding.

(2) The impacted end was bonded with epoxy cemert to a relatively massive

inside ring, and to a thin outside ilg to proviae a clamped boundary to

the shell. Without these rings severe crimping at the end rapidly lowered

the thrust and made comparison to theory impossible. (3) The massive

end ring was accelerated explosively so that the time and simultaneity of

impact could be controlled to within about 2 microseconds. This allowed

the use of a Beckman-Whitley framing camera running at 240. 000

frames/sec, fast enough to see the details of early wave formation.

Test shells were made from 0. 004'7-inch-thick 505Z-H19

aluminum ,heet rolled to a three-inch diameter with a lapped seam

held with cloth tape. The steel ring at the lower end of each shell

served as the "impacting" mass and weighed 1Z times the weight of the

shell so that its change in velocity during the impa,., and hence the

change in impact stress, was small. The ring was accelerated by placing

it on the heavy steel anvil bar and detonating a sheet explosive charge C-n

the opposite end of the anvil. The explosive sent a steep-fronted shock
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into the anvil which enteed the ring and bcunced it off in much the same

"+._y Ps are the cnd pellets from a Hopkinson bar [4. 101. The presEu'e

gradient behind the shock was sufficintly shallow that the reverberatin-,

stresses in the ring were small and it is assurred that the ring was

stress-free when it "impacted" the cylinder. To insure good transmission

of the shock from the anvil to the ring, the contact surfaces were lapped.

The ring velocity from vai'ious thicknesses of sheet explosive was

determined in a separate series of experiments. Since the ring is very

massive compared to the shell, the impact stress in the shell is assumed

to be pcv , where pc is the acoustic impedance of aluminum shell, and

v is the velocity of the steel ring. The axial strain corresponding tu

this stress is

pcv = v
E c

where c is the axial wave speed in the shell.

Figlre 4. 6 shows a sequence of framing camera pictures taken in

an experdnent in which v = 340 in/sec which, with c = 200, 000 in/sec,

gives c = 0.0017. Substituting a/h = 1.50/0. 0027 = 555 into (4. 11)

yields cc 0.00109 so that ec/c, 1.56. Thus, the impact stress
ctL

is 1. 56 times the classical atatic buckling stress. Only alternate frames

from the original record are shown, giving 8. 33 isec between frames

and an exposure time of about 1.4 isec. Normalized time - can be

computed from (4.3) which yields - = (cc/r)t - 0. 38t . On the original

record, very tiny a.splacernents could be discerned at t = 7 j sec (T = 2. 6).

At t 11.= 2 l isec (-= 4.2) in Fig. 4. 6, small w rinkles near the bottom

of the shell are clearly visible. By t 27.8 pLsec k = 10.6) these wrinkles
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are definitely taking on the diamond pattern, indicating that nonlinear

effects are predominating. Thus, from r = 2.6 to T = 10. 6 the displace-

ments grow from being just visible to amplitudes so large that nonlinear

effects dominate. This agrees very well with the period of first rapid

growth given by the theory. From Fig. 4. 3 at c/ = 1. 5 we see that

the amplification grows from g max = 3 at T = 2. 6 to g max = 100 at

r = 10. 6 . It is probable, as discussed later, that nonlinear effects begin

to dominate at an intermediate time of about T = 7.

At frame t = 27. 8 p4sec , the beginning of buckling farther up the

shell is evident. In the following frames these buckles stay fixed in

position and grow in amplitude. Other buckles appear at areas in between,

at which initial imperfections were probably smaller. The tiny ripples

just above the buckles at the lower end characteristically appeared in all

of the experiments. These are most visible at t = 44. 5 Vsec.

To compare the wavelengths in Fig. 4. 6 with theory, the expected

value of the axial wavelength is determined by substituting X = 8. 9

from Fig. 4. 4 into (4. 3), which yields

-- " " = 4 ' x - k = 8.9 1
4T-C4

Using c= 0. 0017 and h 0. 0027 inch gives X = 0. 18 inch. From

Fig. 4. 6, the average length from 15 waves is X 0. 20 inch, only

10% greater than the theoretical mean,

The permanent buckles remaining in several shells after impact

are shown in Fig. 4.7. Figure 4.7(a) is of the same shell as in Fig.

4. 6 and it is apparent that all but the lower few buckles in Fig. 4. 6 were

elastic. Most of the kinks away from the end in Fig. 4. 7(a) were the

result of difficulties in retrieving the shell (it was projected 12 feet into

the air). In general, permanent buckles were confined to the area close

to the impacted end as seen in all the shells in Fig. 4. 7. The most

striking feature of these buckles is their very small size and large aspect

ratio as compared to static buckles. For comparison, Fig. 4. 8 shows a

statically buckled shell of the same material, wall thickness and diameter
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FIG. 4.7 PERMANENT BUCKLES FROM
AXIAL IMPACT (opposite end
was fr**)
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FIG. 4.8 STATIC BUCKLING OF
N IDENTICAL SHELL

as those in Figs. 4. 6 and 4. 7. The circumferential and axial wave -

lengths are about 1. 3 inches, giving an aspect of unity. The dynamic

buckles in Fig. 4. 7 have a mean aspect ratio of 3.3 and axial wave-

lengths of only 0. 18 inch. Several shells are shown to illustrate the

wide range of aspect ratio observed. There is little doubt that the

shape of the buckles was strongly influenced by large elastic and plastic

deformations, but it is significant that the large aspect ratio is suggested

by the linear theory of the preceding sections.

Circumferential wavelengths were measured from the permanent

buckles in these and two other shells and the results are summarized

in Fig. 4. 9. Aspect ratio is plotted rather than wavelength to empha-

size the difference between these buckled forms and static buckles. The

values range from 2. 2 to 7. 1 with a mean of 3.3. These are much larger
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than the static ratio of about 1. It is difficult to compare these wave-

lengths with the linear theory because, as shown in Fig. 4.4, the theo-

retical wavelengths continually increase with time. However, from

Fig. 4. 4(b), the ratio of the theoretical average circu:nferential wave-

length to the average axial wavelength is 3. 3 at T = 7 . Also, the photo-

graphs in Fig. 4. 6 show that this is about the time at which the buckling

amplitude becomes large.

This excellent agreement between theoretical and observed axial

wavelengths, aspect ratios, and buckling times, confirms our original

premise that early small deflection buckling dictates the pattern into

which large deflection buckles form. If more details of the buckling are

desired, displacements in the "preferred" wavelengths from the linear

theory could be used as initial conditions in a large deflection theory.

For calculating the threshold of buckling from axial impact, it may be

sufficient to merely define some magnitude of the linear amplification

function as indicative of buckling.

Crumpling of cylindrical shells used as an energy absorbing

mechanism presents a much more complicated theoretical problem in

which the final I- ickling may be in a mode much different from that

observed here. This occurs because deformation in the very short

axial wavelengths discussed here becomes so large that severe crumpling
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occurs at one or both ends (the duration of the initial thrust is longest

at one end because of the finite speed of axial propagation). This

greatly reduces the thrust and subsequent buckling in the remainder of

the shell probably occurs at a fluctuating thrust which depends on the

buckling itself. An example of such buckling is given in Fig. 4. 10.

FOLDS AT ENDS"IN MODE[ OF
FIG. 6

.,.~rE I SUCKLMN
AT MUCH Rq'OICED
AXIAL THRUST

FIG. 4.10 BUCKLING WITH A HEAVY MASS
ON BOTH ENDS, u/ii = 1.56
AT INITIAL IMPACT

The impact velocity and shell parameters are the same as in Fig. 4. 6,

but now rigid masses are attached at both ends so that buckling pro-

ceeds for a longer time. Buckling away from the ends bears little

resemblance to the impact buckling in Figs. 4. 6 and 4. 7, and in fact,

is strikingly similar to the static buckling in Fig. 4. 8. However, the

crimping near each end in Fig. 4. 10 is of the same form as the impact

buckling in Figs. 4. 6 and 4. 7. Thus, the present theory predicts the

early phase of buckling and suggests that away from the ends the

transition to the final buckled state is very complex and can be studied

only by including the interaction between the buckling and axial thrust.
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5. DYNAMIC BUCKLING OF A CYLINDRICAL SHELL
OF A STRAIN-RATE SENSITIVE MATERIAL

5. 1 INTRODUCTION

In this section the dynamic flow buckling of a cylinder subjected

to a uniform inward radial impulse for the case of a material which

does not exhibit strain hardening but is strain-rate sensitive is investi-

gated. Cylinders of fully annealed 1015 steel, a material known to be

strain-rate sensitive [ 5. 1, 5. Z, 5. 3, 5.4], were subjected to impul-

sive loads which produced final wrinkled forms similar to that shown

in Fig. 5. 1 with average wavelengths that were quite reproducible.

•I

FIG. S.1 TYPICAL BUCKLED SHAPE OF CIRCULAR CYLINDRICAL SHELL
OF FULLY ANNEALED 1015 STEEL-CYLINDER NO, lIb
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These wavelengths are compared with the predictions of a theory of

flow buckling which assumes that the material is linearly visco-plastic.

The reasonably good correlation suggests that this behavior could

account for the formation of the final buckled shape.

Abrahamson and Goodier [ 5. 5] proposed a theory of the for-

mation of the wrinkled shape based on the dynamics of a metal shell

which deforms plastically with linear Ctrain hardening. This latter

property is crucial to the theory because without it divergent series

result. Experimental and predicted numbers of waves were in good

agreement. Goodier and McIvor [ 5. 6] gave a similar theoretical

treatment for a material which exhibited both linear strain hardening

and linear strain-rate sensitivity. In particular, theoretical results

are given for linear strain-rate dependency with no strain hardening

(visco-plastic), which is the behavior assumed here. An outline of

the derivation of the equations of motion and their solutions is given

late r.

5.2 DYNAMIC FLOW BUCKLING

When the elements of a perfect cylindrical shell simultaneously

receive the same large initial inward radial velocity the material flows

into a uniform cylindrical shell of smaller radius and thicker wall until

the initial kinetic energy has been converted into plastic work. Inevitable

snall imperfections, such as in the uniformity of the initial velocity,

cause perturbations from this uniform converging motion. Departures

from the circular form are amplified by the action of the compressive

circumferential stress. These departures are considered small enough

to regard the compressive circumferential strain as increasing through-

out the motion. Thus at two points A and B, on the outside and inside

respectively, as shown in Fig. 5.2. the circumferential strain increases

but more rapidly at B than A due to the slight curvature perturbation.
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Or, the stres, vs. strain-rate

diagram in Fig. 5.2 the representa-

SLCWE~ tive points A 'and B ' are both

b e A moving to the left with B ' lagging

- behind A'. The strain-rate law is

g taken as

\ ' °o * ¢t(5. 1)

STRAIN RATE, a#
,.,, where C and ct are the stress

FIG. 5.2 IDEALIZED STRESS, STRAIN- and the strain rate (subscripts t

RATE LAW denote partial differentiation with

respect to time) and j is the slope

of the straight iine. Owing to the difference of circumferential stress

between A' and B' there is a bending moment M in the section AB

of the shell. For a unit axial length of cylinder regarded as a ring,

integrating (5. 1) over the cross section, with the assumption that plane

sections remain plane, gives

M = IX t I= h 3/1Z (5. Z)

in which I is the second moment of area, h the wall thickness, and

x is the curvature. If the cylinder radius is a and the radial inward

displacement is w(6, t)

(wA e + w)JIa (5.3)

in which the subscripts 9 denote partial differentiation %ith respect

to the angular coordinate e. The final inward displacement is con-

sidered small enough to allo% 'e uie of the initial valucs of the radius

and thickness.

The lack of uniformity around the ring of the mean circum-

ferential stres is neglected. Also. it is amsumed that the slope p

79

l'



of the stress vs. strain-rate line is small so that the mean circum-

ferential stress may be considered independent of time. Consequently,

a constant circumferential force S is taken throughout the inward

motion.

5.3 EQUATIONS OF MOTION

From Fig. 5. 3, which shows an element of the ring w:.th its

attending forces and moments, the

equations of equilibrium or motion

(neg)ecting rotary inertia) may be
S written ao

aM~dM W(9)
* odO Q= Mx (5.4)

0

and

"QX + S; = "mw tt (5.5)

FIG. 5.3 NOTATION. ELEMENT. 5L N TION EEMOT in which Q is the shear force, dXOF SHELL IN MOTION

the arc element corresponding to

de but now subtending an angle dcp,

m the mass per unit run of circumference, and the subscripts denote

partial differentiation. 1Px is the curvature and is given by

= I /a+K (5.6)

Combining Eqs. (5.4) and (5.6) and performing the operations

necessary to eliminate Q, M and Kt yields the following equation for
w :

II(.eepe + w )h/i 4 + S[I/a + (w9e+w)/a2 ] rnwtt (5.7)

It is convenient to introduce the dimensionless displacement

and time variables

u w/a , 4 lIlt/ma 4  (5.8)
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and the dimensionless constant

2 6 212 6 2h4
s Sma A I 144pa h(5.9)

where p is the cylinder material density.

Then (5. 10) can be written in the form

U +(u 2 (5. 10)Uee +ulee+ (ue+ u)---s1.0

5.4 SOLUTION

A particular solution u of (5. 10) may be obtained by assuming
p

that the dimensionless displacement is independent of e . It represents

the unperturbed motion and if a solution of the equation

u" + s u = -s2  (5. 11)

where the primes denote differentiation with respect to T.

Let V be the initial impulsive velocity. Then wt(6. o) = V

and

u T(e,o) = V0 ma 3/lI = v0  (5. 12)

With the initial conditions u (o) =0 and u'(o) = v the solution
p p 0

of (5.11) is

Up() = - 1 + COS ST+ (V /S)sins (5. 13)
p 0

This unperturbed motion ceases when u'(T) = 0. Hence its
p

duration is given by the smallest root of

tans8 T Vo/S (5. 14)
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It is an approximation to the duration when slight wrinkling occurs

since the plastic work done in shortening the circumference is not

influenced to the first order by the slight wrinkling.

A slightly nonuniform initial velocity may be represented in

the form
00

wt(e, O) = Vo[ I + 1: (an cos n8+ On sinn6)]
n=2

(5.15)

u (,o) V 1 + (anCOSn+ nSinne)]
i n=2

Terms with n=l are omitted since they do not contribute to the defor-

mation of the circular shape.

The solution of the reduced form of (5. 10) may be taken in the

form

u = 7 [fn(,r) cos n8 + gn(i)sinn ] (5. 16)
n=2

where fn must satisfy the equation

f + n 2 (n 2  l)fn (n 2 - l)s2 f = 0n n n

The function gn must satisfy the same diferential equation.

The appropriate solutions for f and gn arenn

X+ T

f n B e n + C e n (5.17)-n n n

X TT

g n D ne n +E ne n (.8
-- n n
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where

+n [n2(n 21)/2] (1 +49 /(n 4(n 2I))) 1]

n (5. 19)
k"=[n2 (n2 -1)/z][1+4s2! 4n2- /+1
n n2( _1/2 s2. (n ( n 2 )/n

The constants in (5. 17) and (5. 18) are obtained from the initial

conditions u(e, o) = 0 and u .(e, o) given by (5. 15). When the resulting

functions f and g are substituted into (5. 1') and the resulting

complementary solution added to the particular solution (5. 13) the final

solution is

u = 1+ cos sT +(v /S)sinsT + V0  An(r)(an coSne+ nsinn8) (5.20)

n=2

where
i+

A r) (e n e n )/(X- X (5.21)
nn

X and X + being given by (5. 19).n n

From a comparison of the expressions (5. 15) and (5. 20) it can

be seen that A () may be considered as &n amplification factor whichn
depends on the harmonic and time. Knowing An () determines the

effect of the initial velocity perturbations on the motion. One important

property of the amplification factor is that it tends to zero as n increases.

In fact for n large enough An -,- lin 4 . This ensures the convergence
* of the series representation (5. 20) and shows that the higher harmonics

in the velocity perturbation will have little influence on the final wrinkled

state.

5.5 STRAIN REVERSAL

The foregoing theory is valid until strain reversal begins.

For points on the outside and inside surfaces the circumferential
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compressive strain is

(1-h/2a)(w/a-hw6 /2a 2 ) and (I+h/2a)(w/a+hw /2a2)

and strain reversal begins when one of these reaches a maximum

positive value and then decreases. When this occurs the strain rate

at the inner or outer fiber is zero. The second factors in the above

expressions, in dimensionless terms, are u + huee/Za , and from

(5.20) are representable in the form

u hu 8 /Za - + cos s-r(vo/s)sinsr

(5.22)

+ v +h 2
--n )A () (c oncsn+8 nsinne)

n=2

the strain history is thus determined by (5. 22).

5.6 RANDOM VELOCITY PERTURBATIONS

From (5. 15) the perturbation of the initial velocity is

o0 co

To) = (an cosn6 + bn sinn8)= I c cos (nO - en) (5.23)
n=Z n=2

whe re

a = v a b vo and c2  V( 2 +2
n on n on n o n n

It can be seen from (5. 20) that if u (8, o) is given, the final wrinkled
T

shape is known. With a statistical approach, Lindberg [ 5.7, 5. 8]

demonstrated that, in the case of the impact buckling of thin bars and

cylinders, the assumption of imperfections in the initial displacements

of the white noise type (displacements composed of harmonics of equal

amplitude, random phase and with a uniform spectral density) led to
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a good description of experimentally observed wavelengths. Here,

a similar assumption will be made concerning the perturbation of the

initial velocity. The random process will be considered stationary

and ergodic. In order to bring out the analogy between the present

problem and the relevant parts of the article of Rice [ 5. 9] on random

noise currents the following change of variable and substitutions are

made in (5.23

where

0 cp Sp , f n/c and w ZnTf
,n n n

then (5. 23) becomes

S(eTo) c COS(WnCp- en) (5. 24)

n=2

Now the kinetic energy associated with the perturbed initial

velocity is

ZnT1~ 1 c
-ma f ~- (e)de = (2tram)! f 2 (cp)dcp = (-r-am) n

and that associated with the n-th component is proportional to c2/2n

Defining W(fn) as a kinetic energy density (power spectral
2

density) it follows that w(f n)Af = c n/2 where Af is the "bandwidth"
associated with the n-th component of -T so that

Af f n+l " n = 1/
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For a white noise velocity perturbation c = c , a constant,
~n~and the kinetic energy density is uniform at w(fn) c ccp/2 .Also the

phase angles en in (5. 24) are randomly distributed between 0 and

2tT.

It follows from (5. 20) that the perturbed deformation is

j N
(8, T) = c Z An( r) cos (w np - 6) (5.25)

2

where N is large enough to consider A negligible (A /n 4 for
n n

large n and shows a behavior analogous to a filter).

Applying now the theorem of Rice [ 5. 9] for the expected

number of zeros per unit angle ep and converting this to the number

of waves Nk for e in (0, 2T) gives

1/2

f n2 A dn n

N O (5.26)
f A d

0

5.7 NUMERICAL ANALYSIS AND EXPERIMENTAL RESULTS

Figure 5. 4 is a stress -strain diagram obtained from a static

tensile test on one of several specimens of fully annealed 1015 seel

which were cut from cylinders. It demonstrates the lack of strain

hardening below about 3 percent strain. According to the experimental

results of Manjoine [ 5. 1] the material is extremely sensitive to the

rate of strain; both the length of the horizontal or ideally plastic portion

of the stress-strain curve and the yield stress increase with strain

rate. Based on these results an empirical relation between yield stress

a and strain-rate ct has been suggested by Symonds and Bodner 5. 9J
in the form

I + (e/D)l l p  (5. 7)
y t
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where 0 is the static 'ield

stress, and p and D are

empirical constants. For mild
-- ~ ~50A00 - bi 2

0,0ssteel these are taken as c

230,000 b/in, = 5, and

40,000 D = 40.4 sec

I300The curve (5. 27) is shownI 30.000

in Fig. 5.5. In the development
W
Ci of the theory the linear strain-

20.00 rate law (5. 1) was used and this

is here taken as the equation of

10A00 the tangent to the curve (S. 27)

at the point corresponding to the

0 1! I I 1 1 I value of the initial strain-rate0 2.lrr6 S4.0 , 6. .0 et(0). An example of such a

tangent is shown in Fig. 5. 5.

FIG. 5.4 STATIC STRESS-STRAIN DIAGRAM The slope of the tangent is
FOR FULLY ANNEALED
1015 STEEL i/p 1-1/F =  /(pD/t p)  (5.28)

y r

and the value of a is given by the point of intersection of the tangent

with the axis c t = 0.

All numerical cases correspond to experiments that are

described later and the main results are ,isted in Table 5. 1. The

initial velocities V are obtained from impulse calibration experi-0
ments for the explosive used in eimilar configurations. The sequence

of operations for finding the predicted number of waves around the

cylinder is as follows. From the value of V° the initial strain-rate

C t(0) = V/a is found and hence from (5. 27), (5. Z8), and (5. 1), C and

1A are found. Next, the dimensionless constants S and V0 are

determined by (S. 9) and (5.12). Equation (S. 14) can now bIe solved for

1 which represents the duration of motion; then (5. 8) gives the actual
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approximate duration. The spectrum of the amplification factor

A n() follows from (5.21). Finally, the expected number of waves

M'! it computed from (5. 26).

0m ..II I

S100

J9
100

1

0 1000 1000 3000 4000
STRtAIN .RAY1., -sc'I

FIG. 5.5 STRAIN-RATE LAWS

Table 5. I contains the values of n where A is a maximumn
at each quarter of the duration. It also contains the values of N at

these times. This is done to show the variation of the most amplified

harmonic and the expected number of waves with time. In many cn~es

the variation is not great. Figures S. 6 and 5. 7 show the amplification

spectra for the cylinders numbered 3a and 4a. For case 4a, it can be

seen from Fig. S. 7 tri, there is a rapid growth of the amplification

factors for harmonics about the value n 12 and that above n 30
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virtually no amplification occurs (A n i/n 4for large n ). During

the final three-quarters of the duration of motion the values of n at

peak A nmove from n =8 to n 1Z while the expected number of

waves N X moves only from N = 12 to N X=14 . The magnification

factor curves of Figs. 5. 6 and 5. 7 are quite typical and similar shifts

in the molt amplified harmonic and expected number of waves occur

as deformation proceeds.

Again for cases 3a and 4a randomn initial velocity perturbations

were considered. In case 3a, the first 50 harmonics of constant zmpli-

tude c and random phase (white noise) were employed in (5. 23) and

the representatiok is shown in Fig. 5. 8(a). The resulting perturbed

10AA 
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inward d'splacements in the form a/c were obtained from (5. Z5) at

one-half, three-quarters, and at the whole of the duration of motion.

Th ey are shown in Figs. 5. 8(b), (c), and (d), respectively and provide

an illustration of the development of the buckled form. The 'igher

harmonica in the initial velocity perturbation are filtered out because

of the form of the epectrum of the amplificition factor (Fig. 5. 6). In

the example of Fig. 5. 8, a preferred wavelength exists corresponding

to 18 waves around the cylinder, the expected number of waves if

NX = 14, and one experiment gave 13 waves. For case 4a, Fig. 5. 7(a)

shows a perturbed initial velocity using the first 30 harmonics of eqial

amplitude and random phase. The development of the buckled form can

be seen in Figs. 5. 7(b), (c), and (d). The higher harmonics are

filtered out, 15 waves develop around the cylinder, the expected number

of wavea is N. = 14, and the experimental number is 9 waves.

The amplitudes of the initial imperfections are considered small

enough to avoid strain reversal. Experimental values for the number

of waves comprise the right-hand column of Table 5. 1 and can be com-

pared with the expected number of waves of the most amplified harmonic,

the for.ner being more meaningful but the latter serving as an indicator.

The degree of agreement lends credibility to the postulated mechanism,

at least as a first-order description.

For cylinders 3a and 4a, Figs. 5. 10 and 5. 11 show the

developed final shapes and can be compared with the predicted shape3

of Figs. 5. 8(d) and 5. 9(d) respectively. Apart from the lower harmonics

prescat in the experiments due to a slight lack of circularity of the

cylinders the buckled forms are similar. For these two cylinder har-

monic analyses (trigonometric interpolation) [ 5. 10] of the experimental

buckled forms were carried out and the results are shown in Figs.

5. 12 and 5. 13. The representation was taken i the form

CO

u(e, iT) =7 Cn cos(ne - cpn)
0
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with data recorded at every degree and the coefficients c plotted
n

against n . The large coefficients for the lower harmonics are due to

the initial lack of circularity of the cylinders. In case 3a peaks occur

at n 6, 9, 11, and 15, and components above n = 2Z are negligible.

In case 4a peaks occur at n = 7, 10, and 13, and components above

n = 16 are negligible. No major corflict arises with the amplitude

curves of Figs. 5. 6 and 5. 7.
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FIG. 5.9 RESPONSE OF CYLINDER 4a TO WHITE NOISE VELOCITY PERTURBATIONS
(a) Initial velocity perturbation, (b) Buckled form after 28.5 pisec, (c) Buckled form
after 42.75 /sec, and (d) Buckled form after 57 plsec
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FIG. 5.10 BUCKLED FORM OF CYLINDER 3c

5.8 EXPERIMENTAL TECHNIQUES

The buckled cylinder of Fig. 5. 1 was produced with the experi-

mental arrangement shown in Fig. 5. 14. Enclosing the cylinder is an

attenuator of 1/4-inch-thick neoprene foam and a layer of explosive.

The attenuator, which is necessary to prevent the cylinder from

spalling, extends beyond the end of the cylinder to provide support

for the explosive. The detona~or starts from an ele,-trical signal and

is connected to the main charge by several strirs of explosive. Deto-

nation fronts initiated in the main charge by the strips of explosive

expand from the initiation points and coalesce into a single ring-shaped

detonation front in the "run-up" part of the main charge. The detonation

front, which is of the order of a few mils wide, subsequently sweeps

over the cylinder at a rate of 23, 300 ft/sec.

0.36

0.24-

0.12

0
0  90 160 270 360

9-DEGREES

FIG. 5.11 BUCKLED FORM OF CYLINDER 4a
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FI.514 EXPERIMENTAL ARRANGEMENT

A shock wave is induced .*n the attenuator by the detonation

front and is transmitted (?Din the attenuator to the cylinder, imparting

an ipulsive velocity V 0 see Table 5. 1).

Maximum variations~ in the thicknesse of tho~ explosive are from

Z to 5 percent for charges from 1Z to 5? mnile thick, the larger variations

going with the thinner chargen. The variations in thickness are gradual

except across joints. Variations in the thickness o~f the explosive and
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the uncertainty in the impulse developed by the explosive combine to

give an uncertainty of the order of 10 percent in the velocities imparted

to the cylinders.

Table 5. 1 gives the properties of the cylinders tested and the

initial velocities V0 were obtained by taking an impulse constant forS 3
the explosive-attenuator-target configuration of 2. 4 x 10S dyne-eec/cm

5.9 CONCLUSIONS

In its present form the ti.eory does a satisfactory job of pre-

dicting the buckled forms of cylinders of rate-sensitive material.

There appear to be no major contradictions to the postulated mechanism

of deformation although it would be desirable to have more experimental

evidence and to look more thoroughly into other aspects of the problem

such as the sensitivity of the solution to the strain-rate law and to the

initial velocity, and strain reversal. The theory as it stands is some-

what idealized but seems adequately compensated by simplicity and

usefulness.

9
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6. CORRELATION OF STRUCTURAL RESPONSE INFORMATION

6.1 INTRODUCTION

Over the past several years there have been many investigations

of the failure of space-vehicle-type structures under suddenly applied

external surface loads. It has been suggested that the results of these

investigations be correlated to maximize their usefulness and indicate

areas where further investigations are desirable.

The problem of correlating the results of structural response

investigations has at least two aspects: (I) the development of a scheme

for comparing the results, and (2) the incorporation of the results into

the scheme. The following presentation is based on this division of the

problem.

6.2 SCHEME FOR CORRELATING THE RESULTS OF
STRUCTURAL RESPONSE INVESTIGATIONS

To facilitate the correlation of the results of structural response

investigations it is highly desirable to have a simple and direct me; cs

of comparison. For static loads, results are usually summari-ed by

giving the load magnitude which produces a critical stress, strain, or

displacement in the structure. The same format appears suitable f(,

dynamic loads.

Dynamic loads of the same spacial distribution and pulse shape

(time variation) which produce the same critical stresses, strains,

and/or displacements in a structure exhibit a simple relationship when

plotted in the amplitude-impulse plane. Figure 6. 1 illustrates the

relationship between amplitude and impulse for rectangular pulses which

produce the same maximum displacement of a linear oscillator. In the

region where the curve approaches the vertical asymptote the load

amplitude becomes unimportant and only the impulse is significant.
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In the region where the curve approaches the horizontal asymptote,

the impulse becomes unimportant and only the amplitude is significant.

In the intermediate region both amplitude and impulse are significant.

Figure 6.2 shows the amplitude-impulse curves for rectangular

and triangular pulses which produce the same displacement of a single-

degree-of-freedom system of a rigid-plastic material. The curves

have the same general shape as that of Fig. 6. 1.

Tests of more complex systems such as cylindrical shells,

which have a variation in response mode with load amplitude and

impulse (for loads of the same spacial distribution and pulse shape),

exhibit the same general relationship as that of Figs. 6. 1 and 6.2

between the amplitue and inpulse combinations which produce the

saine permarent displacement.

The response modes of the preceding examples &re not sensitive

to stress waves and are terined unitary modes. Loads which excite

modes which are sensitive to stress waves, termed laminar modes,

are also conveniently displayed in the amplitude-impulse plane.

For a linear oscillator, the information given by the amplitude-impulse
curve (Fig. 6. 1) is related to that given by the shock spectrum [6. 11.
For a load of given shape, the shock spectrum gives the response of
a linear oscillator as a function of the frequency of the oscillator for
a load of unit amplitude, while the amplitude-impulse diagram gives
the ampiitude and imptlse combinations which evoke a given response
from an oscillator of given frequency.

In a complex structure many modes are excited and a one-to-one
correspondence between the amplitude-impulse diagram and the shock
.... z, truin does not exist. For such structures, the amplitude -impulse
diagram displays the loads which evoke a ivtn peak response in the
structure, including effects of all modes of deformation, even if the
respcnse is nonlinear and linear superpo!,ition is invalid. The shock
spectrum gives the peak response of each mode. and in some cases
(the response must be linear and the frequency spread must be limited)
these .- n be superposed to determine an approximate peak response
of the structure.
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Figure 6. 3 shows schematically the amplitude -impulse dia.-rn for the

loads required to prndixice a given deformation of a thin cyi...",arical shell

containeti k~ithinta close -fite, n4 'si ve which in loadied uniformly on the

exterior. The impuist i* constatit (vertic4LI part of curve) until the load

duration eyceeds twice the transit time through the inkier shell. For

monotonically decreasing pulses, at toriger durations the amplitude

decreases a'v-. app~roaches a lirriti~ie

Figure 6. 4 shows the amplitude -impuse cirve for uniform

loads of rec~.rtiuLar shape required to produce cracking (from hoop

tension) of a thin cyiindrical shell by rebound from an internal mandrel.

The jagged nature of the cur-,e is due to peculiarities associated with

the rapid decay of rectangular pualses.
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WIPULSE

1iG_ 3 SCHEMATIC AMPLITUDE-IMPULSE DIAGRAM FOR A THIN
CYLINDRICAL SHELL CONTAINED WITHIN A CLOSE-
FITTltfG SLEEVE LOADED ON THE FXTERIGR

Veom the foregoing, it appears that amplitude -impulse diagrams

afford a c-onvenient basis for comnarison of the results of structural

relpokose investigations having the ultimate obje.Live of predicting

tailure loads. A particularly desirable f!_ature is that the asymptotes

of the arnp'situde-impuise curves, which correspond to short-duration

and long-duration loads, are generally the easiest part of the curves

to establish theoretically and experimentally. Alslu, for most structures,

the general shape of the curve *ill be similar to that of Y-i gs. b. 1 to

K.4. and hence interrwilation is simple. Another desirable feature is

that amplitude and impulse are easily related to weapon yield and
range.

With this approach, to completely describe the failure loads

for - given structure with a given failure criteria requirra a set of

* aplitude-impulse curves, one curve for each load distribtut on and

* pulse shape. Such a set of curves would appear to satisiy the needs of
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FIG. 6.4 SCHEMATIC AMPLITUDE-iMPULSE DIAGRAM FOR RECTANGULAR PULSES
TO PRODUCE CRACKING (from hoop tension) OF A THIN CYLINDRICAL SHELL
BY REBOUND FROM AN INTERNAL MANDREL

the designer, who must design structures to carry certain loads, and

of the analyst, who must determine the failure loads of given struc-

tures.

6. 3 CORRELATION OF THE RESULTS OF STRUCTURAL
RESPONSE INVESTIGATIONS

Of t' vast amount of st-uctural response information avail-

able, only a --ery small part relevant to the problem of detcrniining

failure loads oi space-vehicle -type structures under suddenly applied

external surfe -e loads. Most of the availabi- structural response

rnformation is for 1inear elastic systems and is of secondary importance
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for the present application since, for the structures of greatest interest,

failure generally involves significant permanent deformation. More-

over, of the available information on permanent deformation of struc-

tures, most is for static loads.

Information on permanent deformation of space-vehicle-type

structures under suddenly applied external surface loads appears to

stem from three main rces: (1) investigations of effects of air

blasts on airplane structures, (2) investigations of the effects of under-

water blasts on ship and submarine hulls, and (3) recent investigations

on the effects of suddenly applied external surfac.e loads on space-

vehicle-type structures T1-,7 re, ults of the investigations on aircraft

are of some interest for lightweight saL, lites, but are of very limited

use for the relatively thick-walled structures of re-entry vehicles.

The results of investigation4 on ship and submarine hulls should provide

significant information on re-entry vehicle structures. Unfortunately,

this information has been inaccessible. Therefore, the following

discussion is based on the recent investigations undertaken specifically

to obtain additional information on the response of space-vehicle-type

structures under suddenly applied externai surface loads.

The basic structural element of space vehicles in general is

the cylindrical shell, or conical shell of small angle. The first known

attempt to determine bounds on a wide range of suddenly applied

external surface loads which produce a given permanent deformation

of a cylindrical shell is that described in [ 6. 2], and was concerned

with smoothly varying load distributions The bounding curves found

are shown in Fig. 6. 5. The upper bound, shown for rectangular and

triangular pulse shapes, are the loads vhich produce 10 percent defor-

mation of a uniformly loaded cylindrical shell of a rigid-plastic material

which responds in uniform radial motion (i.e., buckling is exc'uded).

Since in this mode the maximum amount of energy is absorbLd in plastic

work per unit deformation, and no actual load could produce such an

idealized response, this is an absolute upper bounid on actual loads

which produce the same deformation. foi amy cylindrical shell.
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FIG. 6.5 BOUNDING CURVES ON SUDDENLY-APPLIED EXTERNAL
SURFACE LOADS OF SMOOTHLY VARYING DISTRIBUTION
TO PRODUCE 10 PERCENT DEFORMATION OF A
CYLINDRICAL SHELL. (See Caption to Fig. 6.1 for dofinitions.)

The lower bound is based on limited experimental results

[6. 3], [ 6. 6], and in view of the extensive effort being made to obtain

additional information on failure loads of cylindrical shells, should be

regarded as tentative.

The effort alluded to above is that being undertaken at SRI

under Contract P.O. 24-14517 under AF 'k694)-655 with Lockheed

Miissiles and Space Company for the Air i± or, ,. This is a combined

experimental and theoretical effort with the objective of establishing

the amplitude-impulse curves for suddenly applied external surface

loads of smoothly varying distribution which produce 10 percent defor-

mation of monocoque cylindrical shells and multilayer cylindrical

shells typical of space vehicles. The experiments thus far have shown

that burkiing is a predominant failure mechanism over the entire load

range. The theory which is being developed is based on this mechatism.

A report on this work is expected to be available in late 19W'.
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Except for the extensive experimental effort by BRL [b. 6], the

results of which were included in determining the lower bound shown in

Fig. 6. 5, the results of other investigations on cylinders have not yet

been cast in the form of amplitude-impulse diagrams.

Other structural elements of interest for space vehicles are

spherical shells, beams, and plates. For spherical caps, an upper

bound can be obtained on the same basis as that for cylindrical shells.

The resulting curve is given by Fig. 6. 5 with P0 = 2oh/a and I° 44,70 h.

No data or theory are known which would establish a curve of load ampli-

tude and impulse to produce a given permanent deformation of .pherical

shells.

In a recently submitted report [ 6.4], theoretical ampli.ude-

impulse curves are presented for rigid-plastic beams and plates under

a variety of boundary conditions and loads. However, t'he curvcs depj,*rt

by factors of 3 to 10 from experimental results. Considerable more

work is needed to refine the amplitude-impulse curves for beams and

plates.

Amplitude -impulse curves for failure (in hoop tension) of a thin

cylindrical shell by rebound from an internal sleeve for uniformly distri-

buted pulses of rectangular form are given in [6. 5]. This work will be

extended in the near future for uniformly distributed pulses of triangular

and exponential forms.

6.4 CONCLUSIONS

Amplitude impulse diagrams appear to offer a meaningful and

convenient way to represent dynamic failure loads. If this scheme is

adopted, amplitude-impulsa curves should be established for failure

loads for all important structural elements of space vehicles.

Presently available theoretical and experimental information

for establishing failure loads of space-vehicle-type structures is

severely limited. Investigations now underway should significantly

improve this situation.
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7. OTHER INVESTIGATIONS

7. 1 INTERACTION OF SHOCK EFFECTS AND STRUCTURAL
EFFECTS

When a shell structure is exposed to an external impulsive

surface load a shock wave is generated which propagates in from the

exposed surface. If the load is sufficiently intense, the structure will

be destroyed.

Two basic types of damage from impulsive surface loads have

been identified; shock damage and structural damage. Shock damage

is that due to stress wave interactions and generally occurs on the first

or second transit of the stress wave through the wall of the structure,

and, for common space vehicles, this is usually within a few micro-

seconds after the application of the load. Structural damage is that due

to the average velocity of the shell of the structure and generally occurs

50 ~jisec or more after the application of the load, for common space

vehicle structures.

In' investigating the response of space vehicle structures to

impulsive surface loads, it has be~come common practice to study shock

efiects and structural effects separate4. This division is certainly

valid for shock effects, which occur too early to be influenced by struc -

tural action. However, shock effects may influence structural effects.

The division of the response problem into shock effects and

structural effects is based on the vastiy different time scales of the two

phenomena. Ex.-ept for obviotis interaction effects stich as spalling,

crai-king, etc. , this -divis ion assumnes that the stress waves have sunj-

iided wo insignificant amplitudef, before structural deforn'atioa becomes

significant.
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For two-layered structures of nonmetallic heat shield and metal

base structure, it has been shown [7. 1] that for elastic stresses,

about five wave transits through the layers is sufficient to attenuate the

stress amplitude of the stress waves to about 20 percent or less of the

initial amplitude. For common space vehicles, this requires less

than 50 ILsec. Hence for such structures the separation of the response

into shock effects and structural effects is valid.

The attenuation of stress waves in single-layer structures

depends on details of the equation of state of the material. This was

not investigated on the present contract.

7.2 PREDICTION OF ACCELERATIONS FROM SHOCK LOADING

Accelerations from suddenly applied surface loads can produce

accelerations which damage internal components of space vehicles. It

would be highly desirable to have a means o.f predicting the accelerations

from a given load. However, experiments on a mocked-up satellite

vehicle undertaken on Contract AF 29(601)-6435 indicate that internal

accelerations are very sensitive to the local construction, so much so

that it appears unlikely that a useful general method of predicting

accelerations even for simple structures can be expected.
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